第一篇:高数B(上)试题及答案1
高等数学B(上)试题1答案
一、判断题(每题2分,共16分)(在括号里填写“√”或“×”分别表示“对”或“错”)(×)1.两个无穷大量之和必定是无穷大量.(×)2.闭区间上的间断函数必无界.(√)3.若f(x)在某点处连续,则f(x)在该点处必有极限.(×)4.单调函数的导函数也是单调函数.(√)5.无穷小量与有界变量之积为无穷小量.(×)6.yf(x)在点x0连续,则yf(x)在点x0必定可导.(×)7.若x0点为yf(x)的极值点,则必有f(x0)0.(×)8.若f(x)g(x),则f(x)g(x).二、填空题(每题3分,共24分)1.设f(x1)x,则f(3)16.2.limxsinx21=x1。
x112x3.limxsinsinxxxxx1e2.4.曲线x6yy在(2,2)点切线的斜率为2323.5.设f(x0)A,则limh0f(x02h)f(x03h)=
h05A.6.设f(x)sinxcos31,(x0),当f(0)x1处有极大值.时,f(x)在x0点连续.7.函数yx3x在x8.设f(x)为可导函数,f(1)1,F(x)f
三、计算题(每题6分,共42分)
12f(x),则F(1)x1.(n2)(n3)(n4).3n5n(n2)(n3)(n4)解: lim
n5n31.求极限 lim234lim111
(3分)nnnn
1(3分)
xxcosx2.求极限 lim.x0xsinxxxcosx解:lim
x0xsinx1cosxxsinx
(2分)limx01cosx2sinxxcosx
(2分)limx0sinx
33.求y(x1)(x2)2(x3)3在(0,)内的导数.解:lnyln(x1)2ln(x2)3ln(x3),y123yx1x2x3,故y(x1)(x2)2(x3)3123x1x2x3
4.求不定积分2x11x2dx.解: 2x11x2dx
11x2d(1x2)11x2dx
ln(1x2)arctanxC
5.求不定积分xsinx2dx.解:xsinx2dx
12sinx2dx2
12cosx2C
6.求不定积分xsin2xdx.解: xsin2xdx
12xsin2xd(2x)12xdcos2x
12xcos2xcos2xdx
2分)
(2分)
(2分)(2分)
(3分)
(3分)(3分)(3分)(2分)(2分)(11xcos2xsin2xC
(2分)
247.求函数ysinxcosx的导数.解:lnycosxlnsinx
(3分)
ysinxcosx1cot2xlnsinx
(3分)
四、解答题(共9分)
某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成的长方形的长,宽各为多少才能使这间小屋面积最大.解:设垂直于墙壁的边为x,所以平行于墙壁的边为202x,所以,面积为Sx(202x)2x20x,(3分)
由S4x200,知
(3分)当宽x5时,长y202x10,(3分)面积最大S51050(平方米)。
五、证明题(共9分)
若在(,)上f(x)0,f(0)0.证明:F(x)增加.证明:F(x)2f(x)在区间(,0)和(0,)上单调xxf(x)f(x),令G(x)xf(x)f(x)
(2分)2xG(0)0f(0)f(0)0,(2分)
在区间(,0)上,G(x)xf(x)0,(2分)所以G(x)G(0)0,单调增加。
(2分)在区间(0,)上,G(x)xf(x)0,所以0G(0)G(x),单调增加。
(1分)
第二篇:高数试题1
一、一、填空题(每小题3分,共15分)
1. 1.设u=x4+y4-4x2y2,则u x x
2. 2.设u=xy+y/x,则u y
3. 3.函数z=x2+4xy-y2+6x-8y+12的驻点是4. 4.设幂级数n0的收敛半径是4,则幂级数n0的收敛半径是
225. 5.设Σ是柱面x+y=4介于1≤z≤3之间部分曲面,它的法向指向含oz轴的一侧,则=二、二、单选(每小题2分,共8分)
1、函数zf(x,y)在点(x0,y0)处连续是它在该点偏导数存在的:
(A)必要而非充分条件;(B)充分而非必要条件;
(C)充分必要条件;(D)既非充分又非必要条件。答()
2、微分方程yyxy满足条件y’(2)=1, y(2)=1的解是
(A)y=(x-1)2(B)y=(x+1/2)2-21/
4(C)y=1/2(x-1)2+1/2(D)y=(x-1/2)2-5/4anxnanx2n1x2y2z2dxdy答()
3、若方程ypyqy0的系数p+qx=0,则该方程有特解
(A)y=x(B)y=e x(C)y=e – x(D)y=sin x答()
4、微分方程yysinx的一个特解应具有形式答()
(A)Asin x(B)Acos x(C)Asin x +Bcos x(D)x(Asinx+Bcosx)
三、三、解答下列各题
1. 1.(本小题6分)
利用二重积分计算由曲面z=x2+y2,y=1,z=0,y=x2所围成的曲顶柱体的体积。
2、(本小题7分)证明极限y0不存在。
3、(本小题5分)
2验证:y1=cosωx,y=sinωx都是微分方程y’’+ωy=0的解,并写出该方程的通解。
4、(本小题5分)x2ylim4x0xy
31cosx0xf(x)xx0若s(x)是以2为周期的函数f(x)的Fourier级数之和函x设
数,求S(-3π)。
四、四、解答下列各题:
1、(本小题6分)
12x
更换积分次序:
22、(本小题6分)dxf(x,y)dyx
2求曲线五、五、解答下列各题:
1、(本小题6分)xt1t,y,zt21tt在t=1处的切线及法平面方程。
已知Σ是z=x2+y2上 z≤1的部分曲面,试计算4zds2、(本小题6分)
(zy)dxdy(yx)dxdz(xz)dzdy计算,其中光滑曲面∑围成的Ω的体积为
V。
六、六、解答下列各题
1、(本小题5分)
判别级数n
12、(本小题5分)级数
3、(本小题5分)
nsin
n的敛散性。
1
111325272是否收敛,是否绝对收敛?
3n!xn
2试求幂级数k1n!的收敛半径
4、(本小题5分)
试将函数y=1/(4-x4)展开为x的幂级数
七、(本大题10分)已知上半平面内一曲线y=y(x)(x≥0)过点(0,1),且曲线 上任一点M(x0,y0)处切线斜率数值上等于此曲线与x轴,y轴,直线x=x0所围成的面积与该点纵坐标之和,求此曲线方程。
七、一、填空题(每小题3分,共15分)
1. 1.设u=x4+y4-4x2y2,则u x x22 2. 2.设u=xy+y/x,则u y
3. 3.函数z=x2+4xy-y2+6x-8y+12的驻点是4. 4.设幂级数n0的收敛半径是4,则幂级数n0的收敛半径是 R=
222
5. 5.设Σ是柱面x+y=4介于1≤z≤3之间部分曲面,它的法向指向含oz轴的一侧,则= 0八、二、单选(每小题2分,共8分)
1、函数zf(x,y)在点(x0,y0)处连续是它在该点偏导数存在的:(A)必要而非充分条件;(B)充分而非必要条件;
(C)充分必要条件;(D)既非充分又非必要条件。答(A)
2、微分方程yyxy满足条件y’(2)=1, y(2)=1的解是(A)y=(x-1)2(B)y=(x+1/2)2-21/4(C)y=1/2(x-1)2+1/2(D)y=(x-1/2)2-5/
4a
n
x
n
a
n
x2n
1
x2y2z2dxdy
答(C)
3、若方程ypyqy0的系数p+qx=0,则该方程有特解(A)y=x(B)y=e x(C)y=e – x(D)y=sin x答(A)
4、微分方程yysinx的一个特解应具有形式答(D)(A)Asin x(B)Acos x(C)Asin x +Bcos x(D)x(Asinx+Bcosx)九、三、解答下列各题
1. 1.(本小题6分)
利用二重积分计算由曲面z=x2+y2,y=1,z=0,y=x2所围成的曲顶柱体的体积。
1Vdxx2y2dy
1
x
2
2、(本小题7分)
8810
5证明极限y0
x2ylim
4x0xy
3不存在。
[证明]:取不同的直线路径y=kx ykx0 沿不同的路径极限不同,故由定义二重极限不存在。
3、(本小题5分)
验证:y1=cosωx,y=sinωx都是微分方程y’’+ωy=0的解,并写出该方程的通解。
2[验证]:y1’=-ωsinωx,y1’’=-ωcosωx代入方程左端-ωcosωx+ωcosωx=0满足方程。
222
y2’=ωcosωx,y2’’=--ωsinωx代入方程左端-ωsinωx+ωsinωx=0满足方程。故y1、y2皆是微分方程的解。又y1 /y2=(cosωx)/(sinωx)≠常数,故y1与y2线性无关。方程的通解为y=C1cosωx+C2sinωx
4、(本小题5分)
x2kx
1lim4x0xk3x3k
21cosx
0xf(x)x
x0若s(x)是以2为周期的函数f(x)的Fourier级数之和函x设
数,求S(-3π)。解:S(-3π)=-π/2 十、四、解答下列各题:
1、(本小题6分)
更换积分次序:
22、(本小题6分)
dxf(x,y)dydyfx,ydxdyfx,ydx
x
2y
y
12x
1y
42y
t1t,y,zt2
1tt求曲线在t=1处的切线及法平面方程。
x2y2z111
xy12z1012法线方程42解:切线方程:
4x十一、五、解答下列各题:
1、(本小题6分)
2
已知Σ是z=x+y上 z≤1的部分曲面,计算:
2、(本小题6分)
4zdsd14r2rdr3
(zy)dxdy(yx)dxdz(xz)dzdy计算,其中光滑曲面∑围成的Ω的体积为
V。
解:由高斯公式,原积分=十二、六、解答下列各题
1、(本小题5分)
3dv
v
=3V
判别级数n
1解:因为当n趋于∞时,一般项u n的极限为1,其极限不为0,故级数发散。
2、(本小题5分)级数
nsin
n的敛散性。
1
111222357是否收敛,是否绝对收敛?
n
(2n1)21
1(1)(2n1)2limn1/n4解:原级数=
3、(本小题5分)
原级数绝对收敛。
3n!xn3n3!n!
2lim22n3n!n1!试求幂级数k1n!的收敛半径。解
4、(本小题5分)
试将函数y=1/(4-x4)展开为x的幂级数
R0
1y
解:
七、(本大题10分)已知上半平面内一曲线y=y(x)(x≥0)过点(0,1),且曲线 上任一点M(x0,y0)处切线斜率数值上等于此曲线与x轴,y轴,直线x=x0所围成的面积与该点纵坐标之和,求此曲线方程。
x4n11x4x42x4n
12nn1444x44n0414
2x2
解:
yyxdxy
x
yyy即yyy0
特征方程:r2-r-1=0
r1,2
12
15
x2
通解:yc1ec2e
1x2
555
初始条件:y(0)=1 , y’(0)=1解得:C1=10,C2=10
15
x2
5特解是:ye
15
x2
5e
第三篇:高数B教学大纲
《高等数学
(二)B》教学大纲 Advanced Mathematics(2)B
课程编码:09A00050
学分:3.5
课程类别:专业基础课
计划学时:56
其中讲课:56
实验或实践:0
上机:0 适用专业:材料与工程学院,化学化工学院,历史与文化产业学院,商学院,生物科学与技术学院,医学与生命科学学院。
推荐教材:同济大学数学系编,《高等数学》第七版(下册),高等教育出版社,2014年7月。参考书目:
1、齐民友主编,高等数学(下册),高等教育出版社,2009年8月;
2、同济大学数学系编,高等数学习题全解指南(下册),第七版,高等教育出版社,2014年8月。
课程的教学目的与任务
高等数学
(二)B是工科院校的一门极其重要的专业基础课。通过本课程的学习,能使学生获得空间解析几何、二元函数微积分和无穷级数的基本知识,基本理论和基本运算技能,逐步增加学生自学能力,比较熟练的运算能力,抽象思维和空间想象能力。同时强调分析问题和解决问题的实际能力。使学生在得到思维训练和提高数学素养的同时,为后继课程的学习和进一步扩大数学知识面打下必要的数学基础。
课程的基本要求
通过本课程的学习,使学生掌握向量的概念及计算,空间平面、直线、曲面、曲线的概念和运算。掌握多元函数微分的计算及其应用。掌握二重积分的概念、计算和应用。握常数项级数和幂级数的概念和计算。
各章节授课内容、教学方法及学时分配建议(含课内实验)
第八章 向量代数与空间解析几何
建议学时:12
[教学目的与要求] 理解向量的概念及其表示,掌握向量的运算(线性运算、数量积、向量积),了解两个向量垂直、平行的条件;理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。掌握平面方程和直线方程及其求法,会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题,会求点到直线以及点到平面的距离。了解曲面方程和空间曲线方程的概念,了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程,了解空间曲线的参数方程和一般方程,了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。
[教学重点与难点]平面方程和直线方程。
[授 课 方 法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授 课 内 容] 第一节 向量及其线性运算 第二节 数量积 向量积
第三节平面及其方程 第四节 空间直线及其方程 第五节 曲面及其方程 第六节 空间曲线及其方程
第九章 多元函数微分法及其应用
建议学时:20
[教学目的与要求] 了解点集、邻域、区域、多元函数等概念。理解二元函数的几何意义;了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。掌握多元复合函数一阶、二阶偏导数的求法;了解隐函数存在定理,会求多元隐函数的偏导数。了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。了解方向导数与梯度的概念,并掌握其计算方法。理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值;会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。
[教学重点与难点] 偏导数、全微分的概念及其计算,多元函数的极值。[授 课 方 法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授 课 内 容] 第一节 多元函数的基本概念 第二节 偏导数 第三节 全微分
第四节 多元复合函数的求导法则 第五节 隐函数的求导公式 第六节 多元函数微分学的几何应用 第七节 方向导数与梯度 第八节 多元函数的极值及其求法
第十章 重积分
建议学时:10
[教学目的与要求] 理解二重积分的概念,了解二重积分的性质,了解二重积分的中值定理。掌握二重积分的计算方法(直角坐标、极坐标),会用二重积分计算一些几何量与物理量(体积、曲面面积、质量、质心、转动惯量、引力)。
[教学重点与难点] 二重积分的计算。
[授 课 方 法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授 课 内 容] 第一节 二重积分的概念与性质 第二节 二重积分的计算法 第四节 重积分的应用
第十二章 无穷级数
建议学时:14
[教学目的与要求] 理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件;掌握几何级数与p级数收敛与发散的条件。掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法;掌握交错级数的莱布尼茨判别法,了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法,了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。了解函数展开为泰勒级数的充分必要条件,掌握某些函数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数。[教学重点与难点] 数项级数的收敛性判定,幂级数展开,求和函数及收敛域。[授 课 方 法] 以课堂多媒体讲授为主,课堂讨论和课堂练习为辅。[授 课 内 容]
第一节 常数项级数的概念和性质 第二节 常数项级数的审敛法 第三节 幂级数
第四节 函数展开成幂级数
撰稿人:杨殿武
审核人:王纪辉
第四篇:2010成人高考专升本高数试题及答案
贺新郎 1923 挥手从兹去。更那堪凄然相向,苦情重诉。眼角眉梢都似恨,热泪欲零还住。知误会前翻书语。过眼滔滔云共雾,算人间知己吾与汝。人有病,天知否? 今朝霜重东门路,照横塘半天残月,凄清如许。汽笛一声肠已断,从此天涯孤旅。凭割断愁思恨缕。要似昆仑崩绝壁,又恰像台风扫环宇。重比翼,和云翥。沁园春 长沙 1925 独立寒秋,湘江北去,橘子洲头。看万山红遍,层林尽染;漫江碧透,百舸争流。鹰击长空,鱼翔浅底,万类霜天竞自由。怅寥廓,问苍茫大地,谁主沉浮。携来百侣曾游,忆往昔峥嵘岁月稠。恰同学少年,风华正茂;书生意气,挥斥方遒。指点江山,激扬文字,粪土当年万户侯。曾记否,到中流击水,浪遏飞舟。菩萨蛮 黄鹤楼 1927 春
茫茫九派流中国,沉沉一线穿南北。烟雨莽苍苍,龟蛇锁大江。黄鹤知何去?剩有游人处。把酒酹滔滔,心潮逐浪高!
西江月 秋收起义 1927.09 军叫工农革命,旗号镰刀斧头。匡庐一带不停留,要向潇湘直进。地主重重压迫,农民个个同仇。秋收时节暮云愁,霹雳一声暴动。
西江月 井冈山 1928 秋
山下旌旗在望,山头鼓角相闻。敌军围困万千重,我自岿然不动。早已森严壁垒,更加众志成城。黄洋界上炮声隆,报道敌军宵遁。
清平乐 蒋桂战争 1929 秋
风云突变,军阀重开战。洒向人间都是怨,一枕黄梁再现。红旗跃过汀江,直下龙岩上杭。收拾金瓯一片,分田分地真忙。
采桑子 重阳 1929.10 人生易老天难老,岁岁重阳。今又重阳,战地黄花分外香。一年一度秋风劲,不似春光。胜似春光,寥廓江天万里霜。
如梦令 元旦 1930.01 宁化、清流、归化,路隘林深苔滑。今日向何方,直指武夷山下。山下山下,风展红旗如画。
减字木兰花 广昌路上 1930.02 漫天皆白,雪里行军情更迫。头上高山,风卷红旗过大关。此行何去?赣江风雪迷漫处。命令昨颁,十万工农下吉安。
蝶恋花 从汀州向长沙 1930.07 六月天兵征腐恶,万丈长缨要把鲲鹏缚。赣水那边红一角,偏师借重黄公略。百万工农齐踊跃,席卷江西直捣湘和鄂。国际悲歌歌一曲,狂飙为我从天落。渔家傲 反第一次大“围剿” 1931 春 万木霜天红烂漫,天兵怒气冲霄汉。雾满龙冈千嶂暗,齐声唤,前头捉了张辉瓒。二十万军重入赣,风烟滚滚来天半。唤起工农千百万,同心干,不周山下红旗乱。
渔家傲 反第二次大“围剿” 1931 夏 白云山头云欲立,白云山下呼声急,枯木朽株齐努力。枪林逼,飞将军自重霄入。七百里驱十五日,赣水苍茫闽山碧,横扫千军如卷席。有人泣,为营步步嗟何及!
菩萨蛮 大柏地 1933 夏
赤橙黄绿青蓝紫,谁持彩练当空舞?雨后复斜阳,关山阵阵苍。当年鏖战急,弹洞前村壁。装点此关山,今朝更好看。
清平乐 会昌 1934 夏
东方欲晓,莫道君行早。踏遍青山人未老,风景这边独好。会昌城外高峰,颠连直接东溟。战士指看南粤,更加郁郁葱葱。
忆秦娥 娄山关 1935.02 西风烈,长空雁叫霜晨月。霜晨月,马蹄声碎,喇叭声咽。雄关漫道真如铁,而今迈步从头越。从头越,苍山如海,残阳如血。十六字令 三首 1934-35 山,快马加鞭未下鞍。惊回首,离天三尺三。山,倒海翻江卷巨澜。奔腾急,万马战犹酣。山,刺破青天锷未残。天欲堕,赖以拄其间。
【原注】民谣:“上有骷髅山,下有八宝山,离天三尺三。人过要低头,马过要下鞍。”
七律 长征 1935.10 红军不怕远征难,万水千山只等闲。五岭逶迤腾细浪,乌蒙磅礴走泥丸。金沙水拍云崖暖,大渡桥横铁索寒。更喜岷山千里雪,三军过后尽开颜。
念奴娇 昆仑 1935.10 横空出世,莽昆仑,阅尽人间春色。飞起玉龙三百万,搅得周天寒彻。夏日消溶,江河横溢,人或为鱼鳖。千秋功罪,谁人曾与评说? 而今我谓昆仑:不要这高,不要这多雪。安得倚天抽宝剑,把汝裁为三截?一截遗欧,一截赠美,一截还东国。太平世界,环球同此凉热。
清平乐 六盘山 1935.10 天高云淡,望断南飞雁。不到长城非好汉,屈指行程二万。六盘山上高峰,红旗漫卷西风。今日长缨在手,何时缚住苍龙? 沁园春 雪 1936.02 北国风光,千里冰封,万里雪飘。望长城内外,惟馀莽莽;大河上下,顿失滔滔。山舞银蛇,原驰蜡象,欲与天公试比高。须晴日,看红妆素裹,分外妖娆。江山如此多娇,引无数英雄竞折腰。惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚。一代天骄,成吉思汗,只识弯弓射大雕。俱往矣,数风流人物,还看今朝。【原注】“原”指高原,即秦晋高原。
临江仙 赠丁玲 1936.12 壁上红旗飘落照,西风漫卷孤城。保安人物一时新。洞中开宴会,招待出牢人。纤笔一支谁与似,三千毛瑟精兵。阵图开向陇山东。昨天文小姐,今日武将军。七律 人民解放军占领南京 1949.04 钟山风雨起苍黄,百万雄师过大江。虎踞龙盘今胜昔,天翻地覆慨而慷。宜将剩勇追穷寇,不可沽名学霸王。天若有情天亦老,人间正道是沧桑。
七律 和柳亚子先生 1949.04.29 饮茶粤海未能忘,索句渝州叶正黄。三十一年还旧国,落花时节读华章。牢骚太盛防肠断,风物长宜放眼量。莫道昆明池水浅,观鱼胜过富春江。
【附】 柳亚子原诗《感事呈毛主席一首》
开天辟地君真健,说项依刘我大难。夺席谈经非五鹿,无车弹铗怨冯□。〔□:灌换马旁,huan1〕头颅早悔平生贱,肝胆宁忘一寸丹!安得南征驰捷报,分湖便是子陵滩。
浣溪沙 和柳亚子先生 1950.10 一九五零年国庆观剧,柳亚子先生即席赋《浣溪沙》,因步其韵奉和。
长夜难明赤县天,百年魔怪舞翩跹,人民五亿不团圆。一唱雄鸡天下白,万方乐奏有于阗,诗人兴会更无前。
【附】 柳亚子原词
火树银花不夜天,弟兄姐妹舞翩跹,歌声唱彻月儿圆。不是一人能领导,那容百族共骈阗,良宵盛会喜空前。
浪淘沙 北戴河 1954 夏
大雨落幽燕,白浪滔天,秦皇岛外打鱼船。一片汪洋都不见,知向谁边? 往事越千年,魏武挥鞭,东临碣石有遗篇。萧瑟秋风今又是,换了人间。
水调歌头 游泳 1956.06 才饮长江水,又食武昌鱼。万里长江横渡,极目楚天舒。不管风吹浪打,胜似闲庭信步,今日得宽余。子在川上曰:逝者如斯夫!风樯动,龟蛇静,起宏图。一桥飞架南北,天堑变通途。更立西江石壁,截断巫山云雨,高峡出平湖。神女应无恙,当今世界殊。蝶恋花 答李淑一 1957.05.11 我失骄杨君失柳,杨柳轻扬直上重霄九。问讯吴刚何所有,吴刚捧出桂花酒。寂寞嫦娥舒广袖,万里长空且为忠魂舞。忽报人间曾伏虎,泪飞顿作倾盆雨。【附】 李淑一原词《菩萨蛮·惊梦》
兰闺索莫翻身早,夜来触动离愁了。底事太难堪,惊侬晓梦残。征人何处觅,六载无消息。醒忆别伊时,满衫清泪滋。
七律二首 送瘟神 1958.07.01 读六月三十日《人民日报》,余江县消灭了血吸虫。浮想联翩,夜不能寐。微风拂晓,旭日临窗,遥望南天,欣然命笔。
绿水青山枉自多,华佗无奈小虫何!千村薜荔人遗矢,万户萧疏鬼唱歌。坐地日行八万里,巡天遥看一千河。牛郎欲问瘟神事,一样悲欢逐逝波。
春风杨柳万千条,六亿神州尽舜尧。红雨随心翻作浪,青山着意化为桥。天连五岭银锄落,地动三河铁臂摇。借问瘟君欲何往,纸船明烛照天烧。
七律 到韶山 1959.06 一九五九年六月二十五日到韶山。离别这个地方已有三十二年了。
别梦依稀咒逝川,故园三十二年前。红旗卷起农奴戟,黑手高悬霸主鞭。为有牺牲多壮志,敢教日月换新天。喜看稻菽千重浪,遍地英雄下夕烟。
七律 登庐山 1959.07.01 一山飞峙大江边,跃上葱茏四百旋。冷眼向洋看世界,热风吹雨洒江天。云横九派浮黄鹤,浪下三吴起白烟。陶令不知何处去,桃花源里可耕田? 七绝 为女民兵题照 1961.02 飒爽英姿五尺枪,曙光初照演兵场。中华儿女多奇志,不爱红装爱武装。七律 答友人 1961 九嶷山上白云飞,帝子乘风下翠微。斑竹一枝千滴泪,红霞万朵百重衣。洞庭波涌连天雪,长岛人歌动地诗。我欲因之梦寥廓,芙蓉国里尽朝晖。七绝 为李进同志题所摄庐山仙人洞照 1961.09.09 暮色苍茫看劲松,乱云飞渡仍从容。天生一个仙人洞,无限风光在险峰。七律 和郭沫若同志 1961.11.17 一从大地起风雷,便有精生白骨堆。僧是愚氓犹可训,妖为鬼蜮必成灾。金猴奋起千钧棒,玉宇澄清万里埃。今日欢呼孙大圣,只缘妖雾又重来。
【附】 郭沫若原诗《看孙悟空三打白骨精》
人妖颠倒是非淆,对敌慈悲对友刁。咒念金箍闻万遍,精逃白骨累三遭。千刀当剐唐僧肉,一拔何亏大圣毛。教育及时堪赞赏,猪犹智慧胜愚曹。卜算子 咏梅 1961.12 读陆游咏梅词,反其意而用之。
风雨送春归,飞雪迎春到。已是悬崖百丈冰,犹有花枝俏。俏也不争春,只把春来报。待到山花烂漫时,她在丛中笑。
【附】 陆游原词《卜算子·咏梅》
驿外断桥边,寂寞开无主。已是黄昏独自愁,更著风和雨。无意苦争春,一任群芳妒。零落成泥辗作尘,只有香如故。
七律 冬云 1962.12.26 雪压冬云白絮飞,万花纷谢一时稀。高天滚滚寒流急,大地微微暖气吹。独有英雄驱虎豹,更无豪杰怕熊罴。梅花欢喜漫天雪,冻死苍蝇未足奇。
满江红 和郭沫若同志 1963.01.09 小小寰球,有几个苍蝇碰壁。嗡嗡叫,几声凄厉,几声抽泣。蚂蚁缘槐夸大国,蚍蜉撼树谈何易。正西风落叶下长安,飞鸣镝。多少事,从来急;天地转,光阴迫。一万年太久,只争朝夕。四海翻腾云水怒,五洲震荡风雷激。要扫除一切害人虫,全无敌。
【附】 郭沫若原词
沧海横流,方显出英雄本色。人六亿,加强团结,坚持原则。天垮下来擎得起,世披靡矣扶之直。听雄鸡一唱遍寰中,东方白。太阳出,冰山滴;真金在,岂销铄?有雄文四卷,为民立极。桀犬吠尧堪笑止,泥牛入海无消息。迎东风革命展红旗,乾坤赤。
七律 吊罗荣桓同志 1963.12 记得当年草上飞,红军队里每相违。长征不是难堪日,战锦方为大问题。斥□每闻欺大鸟,昆鸡长笑老鹰非。〔□:晏鸟〕君今不幸离人世,国有疑难可问谁? 贺新郎 读史 1964 春
人猿相揖别。只几个石头磨过,小儿时节。铜铁炉中翻火焰,为问何时猜得?不过几千寒热。人世难逢开口笑,上疆场彼此弯弓月。流遍了,郊原血。一篇读罢头飞雪,但记得斑斑点点,几行陈迹。五帝三皇神圣事,骗了无涯过客。有多少风流人物。盗跖庄□流誉后,更陈王奋起挥黄钺。〔□:足乔〕歌未竟,东方白。
水调歌头 重上井冈山 1965.05 久有凌云志,重上井冈山。千里来寻故地,旧貌变新颜。到处莺歌燕舞,更有潺潺流水,高路入云端。过了黄洋界,险处不须看。风雷动,旌旗奋,是人寰。三十八年过去,弹指一挥间。可上九天揽月,可下五洋捉鳖,谈笑凯歌还。世上无难事,只要肯登攀。
念奴娇 鸟儿问答 1965 秋
鲲鹏展翅,九万里,翻动扶摇羊角。背负青天朝下看,都是人间城郭。炮火连天,弹痕遍地,吓倒蓬间雀。怎么得了,哎呀我要飞跃。借问君去何方,雀儿答道:有仙山琼阁。不见前年秋月朗,订了三家条约。还有吃的,土豆烧熟了,再加牛肉。不须放屁!试看天地翻覆。
第五篇:大学高数下册试题及答案
《高等数学》(下册)测试题一
一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)
1.设有直线
及平面,则直线(A)
A.平行于平面;
B.在平面上;
C.垂直于平面;
D.与平面斜交.2.二元函数在点处(C)
A.连续、偏导数存在;
B.连续、偏导数不存在;
C.不连续、偏导数存在;
D.不连续、偏导数不存在.3.设为连续函数,则=(B)
A.;
B.;
C.
D..4.设是平面由,所确定的三角形区域,则曲面积分
=(D)
A.7;
B.;
C.;
D..5.微分方程的一个特解应具有形式(B)
A.;
B.;
C.;
D..二、填空题(每小题3分,本大题共15分)
1.设一平面经过原点及点,且与平面垂直,则此平面方程为;
2.设,则=;
3.设为正向一周,则
0;
4.设圆柱面,与曲面在点相交,且它们的交角为,则正数;
5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有
.三、(本题7分)设由方程组确定了,是,的函数,求及与.解:方程两边取全微分,则
解出
从而
四、(本题7分)已知点及点,求函数在点处沿方向的方向导数.解:,从而
五、(本题8分)计算累次积分).解:依据上下限知,即分区域为
作图可知,该区域也可以表示为
从而
六、(本题8分)计算,其中是由柱面及平面围成的区域.解:先二后一比较方便,七.(本题8分)计算,其中是抛物面被平面所截下的有限部分.解:由对称性
从而
八、(本题8分)计算,是点到点在上半平面上的任意逐段光滑曲线.解:在上半平面上
且连续,从而在上半平面上该曲线积分与路径无关,取
九、(本题8分)计算,其中为半球面上侧.解:补取下侧,则构成封闭曲面的外侧
十、(本题8分)设二阶连续可导函数,适合,求.
解:
由已知
即
十一、(本题4分)求方程的通解.解:解:对应齐次方程特征方程为
非齐次项,与标准式
比较得,对比特征根,推得,从而特解形式可设为
代入方程得
十二、(本题4分)在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.解:设点的坐标为,则问题即在求最小值。
令,则由
推出,的坐标为
附加题:(供学习无穷级数的学生作为测试)
1.判别级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?
解:由于,该级数不会绝对收敛,显然该级数为交错级数且一般项的单调减少趋于零,从而该级数条件收敛
2.求幂级数的收敛区间及和函数.解:
从而收敛区间为,3.将展成以为周期的傅立叶级数.解:已知该函数为奇函数,周期延拓后可展开为正弦级数。
《高等数学》(下册)测试题二
一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)
1.设,且可导,则为(D)
A.;;
B.;
C.;
D..
2.从点到一个平面引垂线,垂足为点,则这个平面的方
程是(B)
A.;
B.;
C.;
D..
3.微分方程的通解是(D)
A.;
B.;
C.;
D..
4.设平面曲线为下半圆周,则曲线积分等于(A)
A.;
B.;
C.;
D..
5.累次积分=(A)
A.;
B.;
C.;
D..
二.填空题(每小题5分,本大题共15分)
1.曲面在点处的切平面方程是;.2.微分方程的待定特解形式是;
3.设是球面的外测,则曲面积分
=.
三、一条直线在平面:上,且与另两条直线L1:及L2:(即L2:)都相交,求该直线方程.(本题7分)
解:先求两已知直线与平面的交点,由
由
由两点式方程得该直线:
四、求函数在点处的梯度及沿梯度方向上函数的方向导数.(本题7分)
解:
沿梯度方向上函数的方向导数
五、做一个容积为1立方米的有盖圆柱形桶,问尺寸应如何,才能使用料最省?(本题8分)
解:设底圆半径为,高为,则由题意,要求的是在条件下的最小值。
由实际问题知,底圆半径和高分别为才能使用料最省
六、设积分域D为所围成,试计算二重积分.(本题8分)
解:观察得知该用极坐标,七、计算三重积分,式中为由所确定的固定的圆台体.(本题8分)
解:解:观察得知该用先二后一的方法
八、设在上有连续的一阶导数,求曲线积分,其中曲线L是从点到点的直线段.(本题8分)
解:在上半平面上
且连续,从而在上半平面上该曲线积分与路径无关,取折线
九、计算曲面积分,其中,为上半球面:.(本题8分)
解:由于,故
为上半球面,则
原式
十、求微分方程的解.(本题8分)
解:
由,得
十一、试证在点处不连续,但存在有一阶偏导数.(本题4分)
解:沿着直线,依赖而变化,从而二重极限不存在,函数在点处不连续。
而
十二、设二阶常系数线性微分方程的一个特解为,试确定常数,并求该方程的通解.(本题4分)
解:由解的结构定理可知,该微分方程对应齐次方程的特征根应为,否则不能有这样的特解。从而特征方程为
因此
为非齐次方程的另一个特解,故,通解为
附加题:(供学习无穷级数的学生作为测试)
1.求无穷级数的收敛域及在收敛域上的和函数.
解:
由于在时发散,在时条件收敛,故收敛域为
看,则
从而
2.求函数在处的幂级数展开式.
解:
3.将函数展开成傅立叶级数,并指明展开式成立的范围.
解:作周期延拓,从而
《高等数学》(下册)测试题三
一、填空题
1.若函数在点处取得极值,则常数.
2.设,则.
3.设S是立方体的边界外侧,则曲面积分
.
4.设幂级数的收敛半径为,则幂级数的收敛区间为.
5.微分方程用待定系数法确定的特解(系数值不求)的形式为.
二、选择题
1.函数在点处(D).
(A)无定义;
(B)无极限;
(C)有极限但不连续;
(D)连续.
2.设,则(B).
(A);
(B);
(C);
(D).
3.两个圆柱体,公共部分的体积为(B).
(A);
(B);
(C);
(D).
4.若,则数列有界是级数收敛的(A).
(A)充分必要条件;
(B)充分条件,但非必要条件;
(C)必要条件,但非充分条件;
(D)既非充分条件,又非必要条件.
5.函数(为任意常数)是微分方程的(C).
(A)通解;
(B)特解;
(C)是解,但既非通解也非特解;
(D)不是解.
三、求曲面上点处的切平面和法线方程.
解:
切平面为
法线为
四、求通过直线的两个互相垂直的平面,其中一个平面平行于直线.
解:设过直线的平面束为
即
第一个平面平行于直线,即有
从而第一个平面为
第二个平面要与第一个平面垂直,也即
从而第二个平面为
五、求微分方程的解,使得该解所表示的曲线在点处与直线相切.
解:直线为,从而有定解条件,特征方程为
方程通解为,由定解的初值条件,由定解的初值条件
从而,特解为
六、设函数有二阶连续导数,而函数满足方程
试求出函数.
解:因为
特征方程为
七、计算曲面积分,其中是球体与锥体的公共部分的表面,,是其外法线方向的方向余弦.
解:两表面的交线为
原式,投影域为,用柱坐标
原式
另解:用球坐标
原式
八、试将函数展成的幂级数(要求写出该幂级数的一般项并指出其收敛区间).
解:
九、判断级数的敛散性.
解:
当,级数收敛;当,级数发散;
当时级数收敛;当时级数发散
十、计算曲线积分,其中为在第一象限内逆时针方向的半圆弧.
解:再取,围成半圆的正向边界
则
原式
十一、求曲面:到平面:的最短距离.
解:问题即求在约束下的最小值
可先求在约束下的最小值点
取
时,这也说明了是不可能的,因为平面与曲面最小距离为。