第一篇:变式教学的误区及对策
变式教学的误区及对策
【摘要】变式教学在教学过程中被广泛运用,但部分教师陷入了变式教学的误区:变式脱离基础、变式没有循序渐进、变式的量过多、难度过大。在教学过程中避免陷入变式教学误区的对策是遵循主动学习、最佳动机、阶段渐进原则,运用“数变而境不变”、“形变意不变”、“题精而型全”、由“变”到“不变”的变式教学提高课堂效率。
【关键词】变式教学;误区;对策;课堂效率
变式教学作为一种传统和典型的中国数学教学方式,有着广泛的经验基础,在实践中已被广大教师自觉的运用。变式教学的基本特征表现为多角度理解数学概念和原理,以及有层次地推进教学。“变式”主要是指对例题、习题进行变通推广,重新认识。恰当合理的变式能营造一种生动活泼、宽松自由的氛围,既开阔学生的视野,激发学生的情趣,又有助于培养学生的探索精神和创新意识,并能使学生举一反
三、事半功倍。但在教学实践中发现,部分教师在变式教学中步入了误区,如,变式脱离基础、变式没有循序渐进、变式的量过多、难度过大。给学生造成了过重的学习和心理负担,课堂教学收不到应有的效果。下面结合具体实例,就变式教学的误区及对策谈几点个人的看法。变式教学的误区
1.1 变式脱离基础
变式要在原有的知识基础上进行,要自然流畅,要有利于学生通过变式问题的解决,加深对所学知识的理解和掌握。有的老师设置的变式问题脱离学生已有的认知基础,也就脱离了教学的内容、目的和要求,连有效教学都谈不上,更别说高效了。
1.2 变式没有循序渐进
变式教学的变式一定循序渐进,切不可“一步到位”,否则不但没有激发学生的学习兴趣,反而会使学生产生畏难情绪,影响问题的解决,降低学习的效率。
讲解人教版八年级分式方程的应用,根据例题做如下的变式:
例1:八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分后,其余学生乘汽车出发,结果他们同时到达。已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度。
变式:八年级学生去距学校S千米的博物馆参观,一部分学生骑自行车先走,过了t小时后其余学生乘汽车出发,结果他们同时到达。已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度。
教学过程中,学生对于例题中的等量关系还不太明白,未能掌握方法解决此类问题,教师的变式题目直接变成用字母表示等量关系,变式的跨度太大,收不到应有的教学效果。
1.3 变式的量过多
有些教师一味追求变式的数量,导致课堂教学无法达到预设的效果。例如教师在讲解《数轴》一课的时侯,教学目标是掌握数轴三要素,正确画出数轴,理解和会找出有理数与数轴上点的关系。教师在引入“数轴”这一概念时,举了温度计;公路上邮局、学校、医院、家分布情况;教室里学生座位行、列的分布情况;吊灯的水晶装饰球的排列等五个例子。引入新课过程,学生对开始所举例子还有数轴的模型,越到后面的例子,学生的注意力开始分散,对数轴这一模型的概念反而消失了,课堂教学因此没能收到良好的效果。1.4 变式的难度过大
有的课堂,教师采用变式教学,没有充分考虑学生学习的实际情况,变式题目的难度过大,超出了学生能力范围,使学生产生逆反心理,从而对解题产生厌烦情绪,教学效果也就会大打折扣。这样的变式教学不仅对学生学习本节课内容没有很好的帮助,而且大大地打击了学生学习数学的积极性。因此,数学变式设计要正确把握变式的“度”。走出变式教学误区的对策
2.1 变式教学应遵循的教学原则
波利亚认为:学习任何东西的最好途径是自己去发现,为了有效地学习,学生应当在给定的条件下,尽量多地自己去发现要学习的材料(主动学习原则);学习材料的生动性和趣味性是学习的最佳刺激,强烈的心智活动所带来的愉快是这种活动的最好报偿,所有最佳学习动机是“学生应当对所学习的材料感兴趣,并且在学习活动中找到乐趣”(最佳动机原则);学生必须学习有序,教师教学要有层次(阶段渐进原则)。
2.2 形式各异的变式教学使得课堂更有效
2.2.1 “数变而境不变”的变式教学
学习是个循序渐进的过程,变式教学必须遵循由浅入深,由易到难的循序变化,给学生创造不断进取的情境。在新课讲授阶段,变式教学的变式不应该范围大,难度大,而应在相同的情境中进行数据微变,让学生(特别是学困生)学习的兴趣与积极性更高、更强,教学更高效。
例3:在人教版七年级教材中学习三角形三边关系时,举了等腰三角形的例子,为了更好的理解和掌握这个特殊的三角形的性质,做如下变式:
变式1:如果等腰三角形的腰为8,底边为5,则它的周长为多少? 变式2:如果等腰三角形的两边分别为8与5,则它的周长为多少? 变式3:如果等腰三角形的两边分别为8与3,则它的周长为多少?
变式4:如果等腰三角形的周长为20,一边为8,则它的另外两边的长为多少? 变式5:如果等腰三角形的周长为20,一边为5,则它的另外两边的长为多少? 对于等腰三角形来说,由于其自身的特殊性,考察的时候是重点。等腰三角形的性质“等腰三角形的两条腰相等”。变式1只考察学生对“腰”的理解;变式2中要求学生能分类讨论腰是8或5的情况;变式3中不仅要讨论腰的情况,还要结合三角形三边关系判断出不能构成三角形的情况;变式
4、变式5是在变式
2、变式3的情境下,逆向思维的考察。
“数变而境不变”的变式教学对于学生而言,熟悉的情境能让他们学习的心理负担减轻,学习的兴趣更高,更有效的锻炼他们的数学思维,从而提高课堂教学的效率。
2.2.2 “形变意不变”的变式教学
变式教学要根据教学需要,遵循学生的认知规律而设计数学变式。其目的是通过变式训练,使学生在理解知识的基础上,把学到的知识转化为能力,形成技能技巧,完成“应用—理解—形成技能—培养能力”的认知过程。在新知识教学中,教师应该精心设计铺垫性变式题组,既体现在知识、思维上的铺垫,又展示知识的发生过程,找准新知识的生长点,让学生利用已有的知识结构来同化新知识,实现知识的迁移,巩固学生数学思维的灵活性。
讲解人教版七年级(下册)二元一次方程组的解法——代入消元法时,设计如下变式: 例4:已知x3是方程3x2a2的解,则a。这里利用七年级上册一元一次方程的题目作为例题,学生感到新鲜中带点熟悉,更有一种怀旧感,从而提升了学习的兴趣。
变式:①x2x32x2yxy1 ② ③ ④
xy3x2y15y184x2xy5⑤xy1xy0x2y12x3y3 ⑥ ⑦ ⑧
3xy105x3y18x2y287yx24 这一系列的变式,方程组中的某个方程的形式不断地发生变化,可解决问题的方法始终都是一个,将某个方程写成一个字母表示另一个字母的形式,然后代入到另一个方程中消去一个未知数,从而求解。
因此对于数学问题的思考,能够抓住问题的本质和规律深入细致地加以分析和解决,而不被一些千变万化的表面现象所迷惑,解题以后能够总结规律和方法,把获得的知识和方法迁移应用于解决其它问题,培养学生思维的深刻性,也提高了课堂的有效性。
2.2.3 “题精而型全”的变式教学
数学课堂上,大量单一的、重复的机械性练习,达不到熟能生巧,反而让学生“生厌”,它不仅对学生知识与技能的掌握无所裨益,而且还会使学生逐步丧失学习数学的兴趣。变式教学的教学过程中,教师根据教材的特点,有重点的对课本知识进行深入浅出地归纳.这种归纳不是概念的重复和罗列,也不同于一个单元的复习,而是一种源于课本而又高于课本的一种知识概括.通过“概括”后整理出的例题,能让学生解题时触类旁通,懂一题而会解一片。
人教版八年级教材,讲解求一次函数的解析式,根据例题做如下四个变式:
例5:已知一个一次函数,当自变量x3时,函数值y1;当x1时,函数值y3。求这个函数的解析式。
变式1:经过点(3,1)和(-1,-3)变式2:经过点(3,1),且截距是4 变式3:经过点(3,1),且平行于直线yx3
变式4:平行于直线yx3,且截距是4 四个变式涵盖了“两点式”“一点截距式”“一点平行式”“平行截距式”四种求一次函数解析式的类型。通过这样一系列变式,使学生充分掌握了求一次函数解析式的所有基础知识和基本概念,沟通了各种求一次函数解析式题型的内在联系。
通过归纳性、全面性的变式训练,提高学生的运用数学知识解决问题的能力,同时也提高学生的数学思维水平与数学能力,进一步提升课堂的有效性。
2.2.4 由“变”到“不变”的变式教学
变式教学中加强训练“多题一解”,寻求一类题的常规解法,重视“通题通法”,不仅达到减轻学生负担、摆脱题海战术、切实提高教学质量的目的,还通过题目的拓宽、加深、变化,培养学生思维的广阔性和变通性,提高数学解决问题的能力。
在讲解二元一次方程组的应用时,可以设计以下几个题目:
例6:甲、乙两列火车同时从相距540千米的A、B两地相向出发,2小时后相遇,如果同向而行,甲火车需经过10.8小时追上乙火车,求两列火车的速度.
解:设甲火车的速度是x千米/时,乙火车的速度是y千米/时,根据题意得:
2x2y540
10.8x10.8y540变式1:某体育场的环行跑道长400米,甲乙分别以一定的速度练习长跑和自行车,如果反向而行,那么他们每隔30秒相遇一次。如果同向而行,那么每隔80秒乙就追上甲一次。甲、乙的速度分别是多少?
解:设乙的速度是x米/秒,甲的速度是y米/秒,根据题意得:
30x30y400
80x80y400 变式2:客车和货车分别在两条互相平行的铁轨上行驶,客车长150米,货车长250米。如果两车相向而行,那么两车车头相遇到车尾离开共需10秒钟;如果客车从后面追货车,那么从客车车头追上货车车尾到客车车尾离开货车车头共需1分40秒,求两车的速度。
解:设客车的速度是x米/秒,货车的速度是y米/秒,根据题意得: 1分40秒=100秒
10x10y150250 100x100y150250变式3:一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。
解:设船在静水中的速度是x千米/时,水流的速度是y千米/时,根据题意得:
3x3y36
3x3y24小结:以上4题虽然题设情境不同,但解题思路相同,前三题属于相遇追击问题,分别列两个方程式,一个是相向而行,一个是同向而行。相向而行为两者路程之和,同向而行为两者路程之差。第四题可以把静水中船速和水流速度看作前三个题目中所设的两个速度,把顺流而行看作相向而行,逆流而行看作同向而行,因此可以归纳成同一方程组如下: 解:设两个未知数分别是x,y
axaym(其中a、b、m、n是正数)
bxbyna、b表示时间,m、n代表路程
此方法对数学习题作多角度、多方面的变式探究,有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变”中探求规律,逐步培养学生灵活多变的思维品质,完善学生的认知结构,增强应变能力和发现问题,解决问题的能力,最终使得数学课堂变得高效。
在数学教学中应用变式教学能不断提高学生的数学能力、有效培养学生的数学思维,亦是提高课堂效率行之有效的教学方法。教师应在充分挖掘变式教学的教学功能的同时避免陷入变式教学的误区,进而对学生的数学能力加以行之有效的训练,从而提高自己的数学课堂效率。
【参考文献】
[1]刘长春.中学数学变式教学与能力培养[M].济南:山东教育出版.2001 [2]杨心德.变式练习在程序性知识学习中的作用[J].教育评论.2004年第2期 [3]未知.教学方式变革中的误区及其对策[EB/OL].(2008-09-06).[2012-05-20] http://
第二篇:变式教学
怎样进行变式教学
变式教学是指在教学过程中通过变更概念非本质的特征、改变问题的条件或结论、转换问题的形式或内容,有意识、有目的地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究 “变”的规律的一种教学方式。数学变式教学是通过一个问题的变式来达到解决一类问题的目的,对引导学生主动学习,掌握数学“双基”,领会数学思想,发展应用意识和创新意识,提高数学素养,形成积极的情感态度,养成良好的学习习惯,提高数学学习的能力都具有很好的积极作用。
一、类比变式,帮助学生理解数学知识的含义
初中数学具有一定的抽象性,许多数学概念概括性比较强,学生理解非常困难;有些知识包含了隐性内容,有仅仅依靠老师的情景创设和知识讲解学生可能无法全面理解数学的内涵的,所以需要运用更加丰富的教学手段帮助学生理解数学知识。
例如在学习“分式的意义”时,一个分式的值为零是包含两层含义:(1)分式的分子为零(2)分母不为零。因此,如果仅有“当x为何值时分式 的值为零”,此类简单模仿性的问题,学生对“分子为零且分母不为零”这个条件还是很不清晰的,考虑“分母不为零” 意识还不会很强。但如果以下的变形训练,教学效果会大不相同:
变形1:当x______时,分式 的值为零?
变形2:当x______时,分式 的值为零?
变形3:当x______时,分式 的值为零? 通过以上的变形,可以对概念的理解逐渐加深,对概念中本质的东西有个非常清晰的认识,因此,数学变式教学有助于养成学生深入反思数学问题的习惯,善于抓住数学问题的本质和规律,探索相关数学问题间的内涵联系以及外延关系。
二、模仿变式,更快熟悉数学的基本方法
数学方法是数学学习的一个重要内容,而这些数学方法的掌握往往需要通过适当改变问题的背景或者提问方式,通过模仿训练来熟悉。所以,在教学中通过精心设计变式问题,或挖掘教材自身的资源可以更快地帮助学生熟悉数学的基本方法。
例如人教版课标教材八年级《数学》(上)中,为了使学生更好地掌握三角形全等的判定的“SSS”方法的运用,就很好地采用了变式教学的设计形式。
(1)如图(1),△ABC是一个钢架,AB=AC,AD是连接点A和BC的中点D的支架,求证:△ABD≌△ACD;(例题1)
(2)如图(2),AB=AD,CB=CD,△ABC与△ADC全等吗?(习题13.2中的复习巩固)(3)如图(3),C是AB的中点,AD=CE,CD=BE,求证△ACD≌△CBE;(习题13.2中的复习巩固)(4)如图(4),B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.(习题13.2中的综合运用)教材中为了让学生掌握“SSS”方法,首先安排了(1)中的简单训练,其中全等的两个三角形有公共边的三角形,相等关系较为直接,只要验证全等的条件是否齐全、是否对应即可以;而(2)则是例1的图形略为变形,旨在增强学生针对图形变化应注意全等条件的验证意识;(3)、(4)中的两个三角形虽然已经一对边之间有直接关系,但其中一对边的相等关系需要经过简单的推理而得到,难度有所加强,对学生是否掌握“SSS”方法的要求更高。这样的变式训练,让学生通过模仿逐步掌握数学的基本方法,对初中学生有着更普遍的意义。
三、阶梯变式,训练中总结数学规律
初中数学内容的形式化趋势比较明显,而学生的对形式化的数学知识理解普遍感到困难,对某些规律的形式化的归纳往往更是无从下手,所以,适当地从学生的实际出发,设计变式教学环节,让学生从变式问题中“变化量”的相互关系中,帮助学生总结数学规律。
例如人教版课标教材九年级《数学》(下)关于二次函数y=ax2的图像的对称轴、顶点、开口等变化规律与a的取值的的关系时就是采用变式教学的形式,让学生通过类比推理总结出这类函数的性质的规律的。
首先,用描点法分别画出两个简单的二次函数“y= x2”和“ y=2x2”的图像,引导学生通过观察它们与“y=x2”的图像的不同点、共同点,发现如下结论:
(1)三个函数对称轴都是y轴;(2)三个函数的顶点都是原点;(3)开口均向上。
其次,进行变式后再尝试验证。同样用描点法别画出两个简单的二次函数“y=-x2”、“y=-x2”、“ y=-2x2”的图像引导学生通过观察它们与图像的不同点、共同点的系数的可以引导学生验证上述结论,发现(1)、(2)依然成立,而(3)有了不同的变化,就是抛物线的开口方向实际上与函数中系数的正负有关,当a>0时,开口向上;当a<0时开口向下。
这样,因为需要对图形的几何性质等规律性知识进行总结或验证时,从简单的一类问题开始进行变式,借助变式教学的方法可以很好地提高学生的学习效率,数学中其它规律的发现与验证都可以使用变式教学。
四、拓展变式,有利于学生形成数学知识之间的联系
数学知识之间的联系往往不是十分明显,经常隐藏于例题或习题之中,教学中如果重视对课本例题和习题的“改装”或引申,进行必要的挖掘,即通过一个典型的例题进行拓展,最大可能的覆盖知识点,把分散的知识点串成一条线,往往会起到意想不到的效果,有利于学生知识的建构。
例如下面问题可以进行充分运用会有更加意想不到的效果:
如图
(一)在DABC中,?/SPAN>B=?/SPAN>C,点D是边BC上的一点,DE^AC,DF^AB,垂足分别是E、F,AB=10cm,DE=5cm,DF=3 cm,求(1)SDABC。(2)AB上的高。
上题通过连接AD分割成两个以腰为底的三角形即可求解SDABC=40 cm2 ;借助于添加AB上的高CH,利用面积公式和第一题的结论,不难求的AB上的高为8cm。我在教学中并未把求得结论作为终极目标,而是继续问:3+5=8,在此题中是否是一个巧合?探究DE、DF、CH之间的内在联系,(引导学生猜想CH=DE+DF)。
引出变式题(1)如图
(二)在DABC中,?/SPAN>B=?/SPAN>C,点D是边BC上的任一点,DE^AC,DF^AB,CH^AB,垂足分别是E、F、H,求证:CH=DE+DF 在计算例题的基础上,学生已经具有了用面积的不同求法把各条垂线段联系起来的意识,此题的证明很容易解决。
在学生思维的积极性充分调动起来的此时,我又借机给出变式(2)如图
(三)在等边DABC中,P是形内任意一点,PD^AB于D,PE^BC于E,PF^AC于F,求证PD+PE+PF是一个定值。通过这组变式训练,面积法在几何计算和证明中的应用得到了很好的体现,同时这一组变式训练经历了一个特殊到一般的过程,有助于深化、巩固知识,学生猜想、归纳能力也有了进一步提高,更重要的是培养学生的问题意识和探究意识。
五、背景变式,强化学生数学思维的训练
在解题教学的思维训练中,通过改变问题背景进行变式训练是一种很有效的方法。通过从不同角度去改变题目,通过解题后的反思,归纳出同一类问题的解题思维的形成过程与方法的采用,通过改变条件,可以让学生对满足不同条件的情况作出正确的分析,通过改变结论等培养学生推理、探索的思维能力,使学生的思维更加灵活性和严密性。
例如:已知等腰三角形的腰长是5,底长为6,求周长。我们可以将此例题进行一题多变。
变式1:已知等腰三角形一腰长为5,周长为16,求底边长。变式2:已等腰三角形一边长为5;另一边长为
6,求周长。
变式3:已知等腰三角形的一边长为2,另一边长为16,求周长。
变式4:已知等腰三角形的腰长为x,求底边长y的取值范围。
变式5:已知等腰三角形的腰长为x,底边长为y,周长是16。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。
变式1是在原问题的基础上训练学生的逆向思维能力,变式2与前两题相比需要改变思维策略,进行分类讨论,而变式3中的“5”显然只能为底的长,否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性,变式4与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问题的关键。通过问题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势,有利于培养思维的灵活性和严密性。
变式教学实际上是在教学中根据数学教学要求、授课对象、数学教材内容和教学环境形成的一种教学方法。变式教学是一种教学形式,要想它能取得较好的课堂教学效益,必须充分考虑上述教学因素;变式教学就是外因,学生的学习活动则是内因,变式教学能为学生提供更多的主动参与学习的时间、空间,促进学生学习的内化的机会。
第三篇:变式教学释义
变式教学释义
1引言
在新课程标准的指引下,数学教学方法也在不断改进、创新。数学教学不应局限于一个狭窄的课本知识领域里,应该是让学生对知识和技能初步理解与掌握后,进一步的深化和熟练,使学生在学习中学会运用课本的知识举一反三,应用数学“变式教学”的方法是十分有效的手段。所谓“变式”,就是指教师有目的、有计划地对命题进行合理的转化。即教师可不断更换命题中的非本质特征;变换问题中的条件或结论;转换问题的内容和形式;配置实际应用的各种环境,但应保留好对象中的本质因素,从而使学生掌握数学对象的本质属性。在学校做了几年的数学教师,下面我结合自己的教学对数学变式教学谈几点看法。
变式教学的原则
1.1 针对性原则 数学课通常有新授课、习题课和复习课,数学变式教学中遇到最多的是概念变式和习题变式。对于不同的授课,变式教学服务的对象也应不同。例如,新授课的习题或概念变式应服务于本节课的教学目的;习题课的习题变式应以本章节内容为主,适当渗透一些数学思想和数学方法;复习课的习题变式不但要渗透数学思想和数学方法,还要进行纵向和横向的联系。
1.2 适用性原则 选择课本内容进行变式,不能“变”得过于简单,过于简单的变式题对学生来说是重复劳动,学生思维的质量得不到很好的提高;也不能“变”得过于难,难度太大容易挫伤学生的学习积极性,起不到很好的教学效果。因此在选择课本习题进行变式时要根据教学目标和学生的学习现状,在适当的范围内变式。
1.3 参与性原则 在变式教学中,教师不能总是自己变题,然后让学生练,要鼓励学生主动参与变题,然后再练习,这样能更好锻炼学生的思维能力。
变式教学的方法
下面举一些具体的例子,谈谈变式教学的方法。
2.1 变换条件或结论 变换条件或结论是将原题的条件或结论进行变动或加深,但所用的知识不离开原题的范围。
在学习函数的单调性时,老师可以讲解这样的例题:判断函数在指定区间内的单调性。y=x2,x∈(0,+∞)。变式1:y=x2,x∈(-∞,0)可让学生练习。变式2:y=x2,将后面的条件都去掉,问学生此时函数的单调性,学生要认真思考,会发现此时这个函数不具备单调性。又如在三角函数中,已知cosα=-,<α<π,求α的其他三角函数值。已知了α的范围,相对来说解题比较简单。如果作这样的变式:已知cosα=-,求α的其他三角函数值,改变后的题少了一个条件,角α的范围,这样就要分情况讨论了。这样的变式可以让学生接触到同一类型题的不同情况,有利于学生更全面的掌握所学知识。
2.2 条件一般化 条件一般化是指将原题中特殊条件,改为具有普遍性的条件,使题目具有一般性,这是设计变式题经常考虑的一种方法。
已知抛物线的方程是y2=4x,在曲线上求一点M(x,y),使它到原点的距离最短。变式1:已知抛物线的方程是y2=4x,在曲线上求一点M(x,y),使它到点A(a,0)的距离最短。变式2:已知抛物线的方程是y2=2px,在曲线上求一点M(x,y),使它到原点的距离最短。
这种变式将特殊的条件变得更一般,符合由特殊到一般的认识规律,学生容易接受。
2.3 联系实际 联系实际是将数学问题与日常生活中常见的问题联系起来,这要求教师要有丰富的生活经验和数学应用意识,教师在教学过程中,要创设情景,引起或指引学生进行联想,让学生知道数学与生活是紧密联系,不可分割的,很多数学问题在生活中都能找到模型。通过联系实际的变式教学来提高学生应用数学的意识和学习数学的兴趣。
已知抛物线的焦点是F(0,8),准线方程是y=8,求抛物线的标准方程。这是完完全全的数学问题,可将这类题变式为:桥洞是抛物线拱形,当水面宽4米时,桥洞高2米,当水面下降1米后,水面的宽是多少?
这样与实际结合的变式练习,能提高学生学习数学的兴趣,从而更好的达到教学目的。
变式教学在数学教学中的作用
3.1 运用变式教学能促进学生学习的主动性。课堂教学效果很大程度上取决于学生的参与情况,这就首先要求学生有学习的主动性,有了学习主动性才能积极参与学习。增强学生在课堂中的主动学习意识,使学生真正成为课堂的主人,是现代数学教学的趋势。变式教学使一题多用,多题重组,给人一种新鲜、生动的感觉,能唤起学生的好奇心和求知欲,因而能够产生主动参与学习的动力,保持其参与教学活动的兴趣和热情
3.2 运用变式教学能培养学生的创新精神。创新,即通过旧的知识,新的组合,得出新的结果的过程。“新”可以是与别人不一样的,也可以是自己新的提高,它突出与众不同。创新学习的关键是培养学生的“问题’意识,学生有疑问,才会去思考,才能有所创新。在课堂中运用变式教学可以引导学生多侧面,多角度,多渠道地思考问题,让学生多探讨,多争论,能有效地训练学生思维创造性,大大地激发了学生的兴趣,从而培养了学生的创新能力。
3.3 运用变式教学能培养学生思维的深刻性。变式教学变换问题的条件和结论,变换问题的形式,但不改变问题的本质,使本质的东西更全面。使学生学习时不只是停留于事物的表象,而能自觉地从本质看问题,同时学会比较全面地看问题,注意从事物之间的联系的矛盾上来理解事物的本质,在一定程度上可以克服和减少思维僵化及思维惰性,从而可以更深刻地理解课堂教学的内容。
变式教学可以让教师有目的、有意识地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律,可以帮助学生使所学的知识点融会贯通,从而让学生在无穷的变化中领略数学的魅力,体会学习数学的乐趣。总之,在新课标下的教师要不断更新观念,因材施教,继续完善好“变式”教学模式,最终达到提高教学质量的目的,并为学生学好数学、用好数学打下良好的基础。
第四篇:变式教学读后感(推荐)
变式教学研究读后感
对于一个毫无毫无教学经历并且对变式教学一无所知的我来说,想要读懂看懂这篇文章无疑是难如登天。在这里,我就大胆的写下我阅读时的联想和感想。
文章的开始比较了中国、日本和美国的数学教学和数学学业成就,有些西方学者认为中国数学教学是“被动灌输”和“机械训练”的,也有少数西方学者认为中国数学教学是精心设计的而并非是机械的单纯讲授式的。我从小学到大学都接受着传统的中国数学教学,我认为它就是一门艺术,一门科学艺术,老师对课堂教学的精心设计,使得知识更加容易被理解掌握。
对于变式,我之前的认识仅仅就是中学数学题目里的变式
一、变式二等。如,二次函数定义式的变式:
2f(x)axbxc,其中a,b,c为常数且a0。二次函数定义式:
2f(x)a(xm)n,其中a,m,n为常数且a0,(m,n)为其图像的顶变式一:点。
变式二:个根。
变式一和变式二的灵活运用为我们的解题带来的极大的便利,相信这种经验大家都是亲身感受过的。
到底什么是变式呢?百度百科如是说:变式一是指通过变更对象的非本质特征以突出对象的本质特征而形成的表现形式。二是指通过变更对象的本质特征以突出对象的非本质特征,从而显示概念的内涵发生了变化。它的特点就是变更人们观察事物的角度或方法,以突出对象的本质特征,突出那些隐蔽的本质要素。
在学习过程中,老师反复强调要举一反三,只有通过举一反三,我们才能触类旁通。而且通过老师精心挑选的的变式题,使我们免于“题海战术”的折磨,从而减轻了我们的负担,同时让我们深化了对知识点的理解。另外,无论中考高考还是其他的一些考试都要根据考试大纲出题,而这些考试题目也就是我们课本例题和练习题的变式,因此变式教学也是一种高f(x)a(xx1)(xx2),其中a0,x1、x22是方程axbxc0的两效的应试教学模式。
然而,说到中国教育的不足,文中也提到中国学生在解决应用性和开放性等问题上不尽人意,这也是我国教育不能忽视的问题。因此培养学生的探究能力和实际问题的解决能力是我国教育努力的方向。老师要抛给学生一些问题但不直接给予答案,让学生根据问题自己动手实践、分析探究,自行提取信息,互相交流讨论并最终解决问题。在这一环节中还应注重学生与学生,学生与教师之间的相互协作关系,培养学生的人际交往能力以及合作的意识和能力。现在的社会是团结合作共同发展的社会,学习上也要发展分享和合作的团队精神。
阅读了这篇文章之后,对于我自己,我有以下收获:对变式有了进一步的表面认识。变式有概念性变式(使学生获得对概念的多角度理解)和过程性变式,其中概念变式又分为标准变式和非标准变式,我想对于一个数学师范生来说,这些变式本质和作用的清楚理解以及合理运用理应是我们必备的技能。但对于目前的我们来说,去理解这样的一篇文章都有很大的难度,可见我们专业知识的匮乏。而且,随着教学模式的进一步发展和改革,未来,我们需要学习和掌握的理论也会不断增加,并且要懂得将理论用于实践中去。教育是一门科学艺术,想要教书育人,我们必须要有真材实料并坚持持之以恒地学习。
第五篇:2变式教学论文
变式教学优化思维品质
———高一一节二次函数求最值的变式教学课有感
摘要:本文通过引用一节二次函数求最值的变式教学课,着重论述了变式教学对培养学生思维的连贯性,严密性,深刻性,广阔性,变通性,双向性,灵活性,发散性和创造性等方面来阐述变式教学的优越性,优化课堂效率。
关键词:变式教学,培养,思维
变式教学是指教师将数学中各种知识点有效地组合起来,从最简单的命题入手,不断变换问题的条件或者结论或者情景,层层推进,逐渐揭示出问题的本质特征的一种教学方式。在不断的变化中去寻找数学的规律性,使学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究“变”的规律,使所有知识点融会贯通,从而透过现象,看到本质,这就是人们常讲的“万变不离其宗”。通过变式对数学问题多角度、多方位、多层次的讨论和思考,能帮助学生打通知识关节,找到解题方法,拓宽解题思路,对于优化课堂效率,提高解题能力,培养思维的连贯性,严密性,深刻性,广阔性,变通性,双向性,灵活性,发散性和创造性等方面都是大有益处的。
引例(1)求f(x)x22x1在R上的最小值
(2)求f(x)x22x1在[2,3]上的最小值(3)求f(x)x22x1在[0,3]上的最小值
本堂课由一个二次函数,在三个不同的区间上求最小值的问题引入,揭露出二次函数求最值的本质,于何处取得最值?关键是图像对称轴与区间的关系的讨论。区间不同,结果也不同,体现出在解决函数问题时,定义域的重要性,即所研究问题的范围。问题串式编题,既有相同之处,又有细微区别,区别之处揭露本质。
一、改变条件加入讨论构造变式,培养思维的严密性和深刻性
变式教学不是为了变式而变式,而是要根据教学与学习的需要,遵循学生的认知规律,在重要处和关键处进行变式,让学生充分领会问题的本质,实现教学目标。
变式一
求f(x)x2x1在[0,a]上的值域
(1)当0 (3)当a>2时,min=0,max=f(a), 值域为[0,a2-2a+1] 变式二 求f(x)x22x1在[a,a+2]上的值域