第一篇:2014重庆中考数学24题证明题——三角形
2014重庆中考数学24题证明题——三角形
1、如图,在直角三角形ABC中,=90,AB=AC,点D、E分别在AB、AC上且AD=AE,连接CD,BE,过点A
作
AF⊥BE交BC于F,过点F作FG⊥CD交CA于G.证明:(1)∠AFB=∠GFC;(2)AE=CG2、如图,在等腰Rt△ABC中,ABC90,ABBC,D为斜边AC延长线上一点,过D点做BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.(1)若AB=2,BF=3,求AD的长度
(2)G为AC中点,连接GF,求证:AFGBEFGFE.A
3、如图,在△ABC中,∠ACB=45°,AD是△ABC的高,在AD上取点E,使得DE=DB,连接CE并延长,交边AB于点F,连接DF.(1)求证:AB=CE;(2)求证:BF+EF=2FD.4、如图,△ABC中,CA=CB,∠ACB=90,D为△ABC外一点,且AD⊥BD,BD交AC于E,G
为BC上一点,且∠BCG=∠DCA,过G点作GH⊥CG交CB于H.
(1)求证:CD=CG;
(2)若AD=CG,求证:AB=AC+BH.
5、如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证:ME=BD.
第二篇:全等三角形证明题
全等三角形证明题
1在直角坐标系中,有两个点A(2,4)B(-2,-4),(即A.B两点是
关于圆点对称的),将直角坐标系关于Y轴翻折,得A1,B1,然后分别
连接A,A1和B,B1后,证AA1O和BB1O两三角行全等!
2有一个正方形,分别连接它的对角,求其中的全等三角形?
3一个等腰三角形,做这个三角形的高线后,求其中的全等三角形?
4在直角坐标系中,有一个直角三角形,将此三角形向左平移6格,求平移后的三角形和原料的三角形是否全等?
5有两个直三角形,其一个三角形三边的长为3,4,5,另一个三角形的直角边长为3和4.求证两三角形全等.(注:SAS)
6一个等边三角形的边长为5cm,另一个等边三角形边长也是5cm,求两个等边三角形全等.(注:SAS或SSS)
7.已知平行四边形ABCD,连接点AC,求三角形ABC和三
角形CDA全等.8等腰梯形ABCD对角相连求全等的三角形?
9在一个圆上,在圆内做两个三角形,圆心是公共的两个三角形的端点,且这两个角度数都为30度,求两三角形全等.(由
于圆半径相等,且两边夹角相等,所以SAS)
10.已知:三角形中AB=AC,求证:(1)∠B=∠C
11三角形ABC和三角形FDE,AB=FD,AC=FE,BC=DE,求全等(SSS)
12三角形ABC和三角形FDE,∠C=∠E,AC=FE,∠A=∠F,求全等
(ASA)
三角形ADF是直角三角形
所以角EAD=90度-角BDA
三角形ADB是直角三角形
所以角BAD=90度-角BDA
所以角EAD=角BAD
CE平行AB
所以同旁内角互补
所以角BAD+角ACE=180度
角BAD=90度
所以角ACE=90度
所以角BAD=角ACE
所以三角形BAD和三角形ACE中
角EAD=角BAD
角BAD=角ACE
AB=AC
由ASA
三角形BAD≌三角形ACE
所以AD=CE
因为D是AC中点,且AB=AC
所以AB=2AD
所以AB=2CE
只要证明直角三角形BAD全等ACE就可以了
AE垂直BD,所以角EAC=角DBA(为什么?因为角EAC+角BAE=90度,而角BAE+角DBA=90度,所以角EAC=角DBA)
然后因为CE平行AB,所以角ACE=90度
看三角形BAD和ACE
角EAC=角DBA
角BAD=角ACE=90
又因为AB=AC
所以两个直角三角形全等
所以AD=CE
又因为BD是中线,所以AC=2AD
所以AB=2CE
∵∠DEC=∠AEB(对顶角相等)
∠A=∠D
AE=ED
∴△ABE全等于△DEC(ASA)
∴EB=EC
∵∠DEC=50°
∴∠BEC=180°—∠EDC=180°—50°=130°
∵BE=EC
∴△BEC是等腰三角形
∴∠EBC=∠ECB=(180°—∠BEC)×(1/2)=25°
第三篇:全等三角形证明题
全等三角形证明题
1B
E
5.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG.
求证:BEDG.
A B
G F
AB∥ED,ABCE,BCED.C为BE上一点,1.已知:如图,点A,D分别在BE两侧.求
证:ACCD.
2.如图,在正方形ABCD中,CEDF.求证:△CBE≌△DCF.E B
F
C
A
D
C
6.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.D
(1)求证:△ADE≌△CB′E;(2)若AB=8,DE=3,试求BC的长.AD
′
E
C
B
3.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG 于 F.(1)求证:△ABF≌△DAE;(2)DEEFFB.
A
B
D
全等三角形证明题
21.如图,D是AB上一点,DF交AC于点E,AEEC,CF∥AB. 求证:ADCF.
A
E
C
2.已知:如图,在矩形ABCD中,AF=BE.求证:DE=CF.
4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.求证:△ABE≌△ACE.F G
C
B
E
A
C
B
C,AD,AD的延长线交3.把两个含有45°角的直角三角板如图放置,点D在BC上,连结 BE
BE于点F.(1)求证:△BEC≌△ADC;(2)说明:AF⊥BE.
全等三角形证明题
31.如图,AB∥DE,AC∥DF,BE=CF. 求证:AB=DE.
D
C
B E C
F
4.已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.2.如图,△ABC和△ECD都是等腰直角三角形,∠ACB∠DCE90,D为AB边上一点.求证:(1)△ACE≌△BCD;(2)ADAEDE.
D
E
B
5.如图,将一等腰直角三角形ABC的直角顶点置于直线l上,且过A、B两点分别作直线l的垂线,垂足分别为D、E.请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全
A
等的过程.
C
3.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线
BC上,且PE=PB.求证:(1)PE=PD ;(2)PE⊥PD.的位置,连结EF、CF.求证:(1)△ABE≌△CBF;(2)FC⊥AC.D
D
E
6.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE
交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.
4.如图,正方形ABCD中,E是对角线AC或延长线上一点,把BE绕点B顺时针旋转90°到BF
DEF
AB C
E
B
C
F
第四篇:上海中考数学题
上海中考数学题“奥数”难度? 考生考完“泪汪汪”
2012-06-19 07:28
“语文考完美滋滋,理化考完苦哈哈,英语考完乐呵呵,数学考完泪汪汪。”——这是今年上海中考结束后网上的一句“流行”语。中考结束后,不少考生、初三数学老师纷纷表示数学卷子偏难,部分高中数学老师接受记者采访时表示,考卷难可能便于高中选拔,而一些初中生和家长期望学奥数来提高应考能力,其实这种训练方法对中考的帮助并不大。昨天上午,一名送考的初三数学老师在网上发帖讲述了自己对中考数学的看法。他说,“伴着旁泼大雨,孩子们考完了最后一门数学。走出考场的学生大部分面色僵直,好的同学也没有很大把握。甚至有几题都没有做出来。”
这名教师表示自己晚上第一时间把中考卷完整做了一遍,“个人感觉比前两年的都难,题型有一点突破。对能力有较高要求,填空选择也考了些比较冷门、学生容易忽视的知识点。几何证明依然是有关于四边形,但是这次的方法是学生最薄弱的或者说学生不善于运用的:比例线段推出平行线。对于那些基础较差的同学可能一点思路也没有。”
对于学生普遍反映的最后两题,这名教师认为,“如果能想出合理的方法,解答非常简便,但是前提是学生对基本图形掌握非常牢固,能够用多角度去寻找方法。方法还是老的,但是需要学生有极强的应变能力。对普通的公办学校的学生来说,确实难度不小。”但比起初中数学老师,高中的数学教师则表示考题难度可以接受。在上海一所公办中学任教的张老师告诉东方网记者,他看过了今年中考题目,感觉题目并没有想象中和“传闻”中的那么难。张老师说,“学生对于考题难不难的判断标准就是自己能否做出来,但教师看题目难不难,主要还是看题目考察了学生哪些方面的能力。”
张老师表示,很多考生觉得数学难,但他认为主要原因还是由于现在很多学生不喜欢数学,觉得学数学没用,甚至有学生对数学学习产生厌恶的情绪,这样的状态下,更加学不好数学。
提到中考数学考题的难易程度,上海吴淞中学数学老师刘刚铭认为,其实考生不必纠结,“如果真的很难,那么可能大家都答不上来。”刘刚铭说,有些初中学生去学奥数,期望以此增加自己的“实力”,但在他看来帮助并不大。“学生的接受能力、思维能力不是读了奥数就一定会变强的,关键还是要通过自己的努力。”
也有数学教师指出,从目前的情况来看,选拔也是中考的一个功能,难度越大的考卷,越容易拉开不同程度的学生,便于选拔。当然,考分并不能决定一个考生能力,一个思维能力、接受能力强的考生,即使初中阶段成绩一般,通过努力,在高中阶段也能成为“尖子生”。
第五篇:全等三角形证明题09
全等三角形证明题09 ⑴ 已知如图,△ABC中,∠A=90°,AB=AC,AO为BC上的中线.
① 求证:OA=OB=OC.
② 设点M在AC上移动,点N在AB上移动,连结OM、ON、MN,当AM=BN时,试判断△MON的形状并予以证明.
M A B O C A B O C N ⑵ 已知如图,△ABC中,∠C=90°,AC=BC,D为AB的中点.一直角三角板的直角顶点绕D旋转,其两条直角边分别交射线AC于G,交射线CB于H.试找出图中除AC=BC,AD=CD=BD以外所有相等的线段并予以证明.
⑶ 已知如图,△ABC中,BD⊥AC于D,CE⊥AB于E.
① 在BD上截取BF=AC,在CE的延长线上截取CG=AB,连结AG、AF、GF,试判断△AFG的形状并予以证明.
B F C D E G A C G H B D A ② 分别在BD、CE的反向延长线上截取BF=AC,CG=AB,连结AG、AF、GF,①中的结论还成立吗?若成立,请予证明;若不成立,请说明理由.
G B F
C E
D A
全等三角形证明题09 ⑷ 探求规律.
① 如图,等边三角形ABC中,BM、CN相交于O,∠BON=60°,求证:BM=CN.
② 如图,正方形ABCD中,BM、CN相交于O,∠BON=90°,求证:BM=CN.
③ 如图,正五边形ABCDE中,BM、CN相交于O,∠BON=108°,求证:BM=CN.
④ 如图,正六边形ABCDEF中,BM、CN相交于O,∠BON=108°,求证:BM=CN.
⑤ 正n边形ABCDEFGH……中,BM、CN相交于O,当∠BON等于多少度时,BM=CN.请写出你的猜测(不需证明).
⑥ 如图,五边形ABCDE中,BM、CN相交于O,∠BON=108°,BM=CN仍成立吗?若成立,请予证明;若不成立,请说明理由.
E N A O B C D M B A F N E M O D B A O C E N D M B O C A N D M B N M O C A C 2