七年级下平行线的判定证明练习精选

时间:2019-05-13 15:10:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级下平行线的判定证明练习精选》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级下平行线的判定证明练习精选》。

第一篇:七年级下平行线的判定证明练习精选

一.判断题:

1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。()

2.如图①,如果直线l1⊥OB,直线l2⊥OA,那么l1与 l2一定相交。()

3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()

二.填空题:

1.如图③ ∵∠1=∠2,∴_______∥________()。∵∠2=∠3,∴_______∥________()。

2.如图④ ∵∠1=∠2,∴_______∥________()。∵∠3=∠4,∴_______∥________()。

3.如图⑤ ∠B=∠D=∠E,那么图形中的平行线有________________________________。

4.如图⑥ ∵ AB⊥BD,CD⊥BD(已知)

∴ AB∥CD()

又∵∠1+∠2 =180(已知)

∴ AB∥EF()

∴ CD∥EF()

三.选择题:

1.如图⑦,∠D=∠EFC,那么()

A.AD∥BCB.AB∥CD

C.EF∥BCD.AD∥EF

2.如图⑧,判定AB∥CE的理由是()

A.∠B=∠ACEB.∠A=∠ECDC.∠B=∠ACBD.∠A=∠ACE

3.如图⑨,下列推理错误的是()

A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥b

C.∵∠1=∠2,∴c∥dD.∵∠1=∠2,∴c∥d

4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()

A.①③B.②④C.①③④D.①②③④

四.完成推理,填写推理依据:

1.如图⑩ ∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF()

∵AB∥CD,CD∥EF,∴ AB∥_______()

2.如图⑾ 填空:

(1)∵∠2=∠3(已知)

∴ AB__________()

(2)∵∠1=∠A(已知)

∴__________()

(3)∵∠1=∠D(已知)

∴__________()

(4)∵_______=∠F(已知)

∴AC∥DF()

3.填空。如图,∵AC⊥AB,BD⊥AB(已知)

∴∠CAB=90°,∠______=90°()∴∠CAB=∠______()∵∠CAE=∠DBF(已知)∴∠BAE=∠______

∴_____∥_____()4.已知,如图∠1+∠2=180°,填空。

∵∠1+∠2=180°()又∠2=∠3()

∴∠1+∠3=180°

∴_________()

五.证明题

1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE

2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。

3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。

.已知:如图,求证:EC∥DF.,且

.5.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.

6.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.

D 图10 F

E B P

Q

D

C

B

A C

7.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。

求证:GH∥MN。

8.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。

9.如图,已知:∠A=∠1,∠C=∠2。求证:求证:AB∥CD。

第二篇:七年级下 5.2.2平行线的判定(定稿)

七年级下 5.2.2平行线的判定

一. 【内容和内容解析】

判定定理1:同位角相等,两直线平行 判定定理2:内错角相等,两直线平行 判定定理3:同旁内角互补,两直线平行

平行线的判定是本章的重点内容之一,是图形与几何领域的基础知识,在以后的学习中经常用到。本节不仅要求学生通过观察、思考、探究等活动归纳出定理,还要求学生能进行一些“简单推理”。

对平行线判定定理的研究遵循“直观感知、简单推理、归纳总结、初步运用”等认知过程展开。通过该内容的学习,使学生建立化归的思想,让学生理解并掌握“简单推理”的过程,学会利用平行线的判定定理解决一些简单的图形与几何问题。

二. 【目标和目标解析】

1. 知识与技能:理解并掌握平行线的判定定理

(1)理解并掌握平行线的判定定理2,判定定理3证明过程中的简单推理。(2)掌握推理、证明的格式。

(3)理解并掌握平行线的三个判定定理,会通过同位角相等、内错角相等、同旁内角互补判定直线平行。

2. 过程与方法:

(1)在判定定理

2、判定定理3的证明过程中,体会化归思想。

(2)在判定定理

2、判定定理3的证明过程中,以及用判定定理解题的过程中,体会简单推理的过程。

3. 情感态度、价值观:

在定理证明与解题过程中,培养学生的推理能力。

三. 【教学重点与难点】

(1)重点:判定定理的运用(2)难点:判定定理的推导

四. 【教学支持条件分析】

为了有效实现教学目标,条件许可准备投影仪、多媒体课件,三角板。学生自备学具,三角板,直尺。

五. 【教学过程设计】

1.教师引导学生复习近平行线的性质:

性质1:两直线平行,同位角相等 性质2:两直线平行,内错角相等 性质3:两直线平行,同旁内角互补

2.教师引导学生复习近平行线的绘图方法(已知一条直线a,过直线外一点作与a平行的直线b),让学生注意在绘制过程中三角板起什么作用。

学生在纸上作出后,教师在黑板上演示。

如图所示,我们实际上画a的平行线b就是在找与∠1相等的∠2(以三角板的那个顶点为观察对象),如果按位置关系来分类,那么∠1与∠2正好是a,b被直线c所截的同位角。这就说明:如果同位角相等,那么a与b平行。得出结论:

判定定理1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平

行。简单地说:同位角相等,两直线平行。

3.例1:

(1)已知:∠CBE=∠A,则哪两条直线平行?为什么?

学生思考一段时间后,由老师板书证明过程,强调证明格式,要求学生在写作业时,在每一步之后用括号标注原因。

证明:∵∠CBE=∠A(已知)

∴AD∥CB(同位角相等,两直线平行)

4.教师引导学生观察判定定理1,发现判定定理1是课前复习的平行线的性质1的逆定理。由此引导学生思考,是否平行线的性质2,性质3的逆定理也成立?

数学上,对于未知的问题,我们通常把它转化为已知的问题来解决。我们想知道,由内错角相等,或者同旁内角互补,能不能得出两直线平行的结论。不妨把它转化成已知的同位角相等的问题。

内错角相等的情况下(∠2=∠4):

∵∠2=∠4(已知)又∵∠1=∠4(对顶角相等)∴∠1=∠2(等量代换)

∴a∥b(同位角相等,两直线平行)如此我们便得到另一个结论:

判定定理2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平

行。简单地说:内错角相等,两直线平行。

5.接前面例1:

(2)已知∠CBE=∠C,则哪两条直线平行?为什么?

教师板书证明过程:

证明:∵∠CBE=∠C(已知)

∴CD∥AB(内错角相等,两直线平行)

6.类似的,我们来看同旁内角互补的情况

同旁内角互补的情况下(∠2+∠3=180°):

∵∠2+∠3=180°(已知)∴∠2=180°-∠3(移项)∵∠1+∠3=180°(平角)∴∠1=180°-∠3(移项)∴∠1=∠2(等量代换)

∴a平行b(同位角相等,两直线平行)这样我们就得到了:

判定定理3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线

平行。简单地说,同旁内角互补,两直线平行。

7.接前面例1:

(3)已知:∠C+∠ABC=180°,则哪两条直线平行?为什么?

教师板书证明过程:

证明:∵∠C+∠ABC=180°(已知)

∴DC∥AB(同旁内角互补,两直线平行)

8.引导学生回忆判定定理2和判定定理3的证明过程,我们是把位置问题转化为已知问题来解决的,这是数学上很常用的一种思想——化归思想。希望同学们在以后研究数学问题的过程中,遇到不会的问题,尝试着使用化归的方法来解决。

另一点需要说明的是,判定定理2和3我们给出了证明过程,判定定理1我们是通过观察得到的。实际上,在欧式几何中,利用同位角、内错角、同旁内角来判定两直线平行的方法都是可以证明的。但是同位角判定两直线平行的证明过程对于初中生有一定难度,所以不要求大家掌握他的证明方法,我们直接把他作为扩大了的公理来使用。

9.例2:

如图,直线a,b,c被直线l所截,量得∠1=∠2=∠3(1)从∠1=∠2可以得出哪两条直线平行?(2)从∠1=∠3可以得出哪两条直线平行?(3)直线a,b,c互相平行么? 找两位同学上黑板写出(1)(2)的证明过程。

第三问,教师提醒学生回忆上一节课所学的平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。教师板书证明过程。证明:(3)∵a∥b,a∥c(已知)

∴a∥b∥c(如果两条直线都与第三条直线平行,那么这两条新支线也互相平行)

10.课堂小结:

这节课我们学习了平行线的三个判定定理:

同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行

平行线的判定,在初中数学“空间与图形”部分中很重要,是学习之后的内容的重要基础,也是中考必考的考点之一。希望同学们课下能认真复习这节课的知识,有疑问及时找老师解决。

六. 【课后作业】

教材P16-1,2 教材P17-5,6

第三篇:七年级下《平行线的判定》教学反思

七年级数学下《平行线的判定》教学反思

通过上一节课的学习,学生对平行线的意义已有了较深的认识,但这种认识仅是直观的、感性的认识,而要来说明两直线平行,只有两个途径:平行线的定义及平行公理的推论,其中平行公理的推论对条件要求较强,要有三条平行线,且其中的两条分别与第三条平行。如果用平行线定义更难以说明两条直线没有交点,因而,需要通过其他途径寻找判定两条直线平行的更普遍的方法。

本节的主要内容是平行线的一个判定公理和两个判定定理,先由画平行线的过程得出,画平行线实际上是画相等的同位角。由此得到平行线的判定公理,再以判定公理为基础推导出两个判定定理。在教学过程中,我注重了以下几个方面:

1、突出学生是学习的主体,把问题尽量抛给学生解决。这节课中,我除了作必要的引导和示范外,问题的发现,解决,练习题的讲解尽可能让学生自己完成。

2、形式多样,求实务本。从生活问题引入,发现第一种识别方法,然后解决实际问题;在巩固练习中发现新的问题,激发学生再次探索,形成结论;练习题中注重图形的变化,在图形中为学生设置易错点再及时纠错。而每一个环节的设计都是围绕着需要解决的问题展开,不是单纯地追求形式的变化。

5、有意识地对学生渗透“转化”思想;有意识地将数学学习与生活实际联系起来。

本节课对初一学生而言,又是一个艰难的起步。一堂课下来,遗憾也有不少。比如没有兼顾到学生的差异,不同的环节可让学生互助;对平行线判定公理的研究太长,导致后面的练习巩固时间不充分;在这堂课上,部分同学没有展示自己的勇气,一方面与教学内容的难度有关。对于一部分同学同位角、内错角是哪两条直线被哪一条直线所截构成的还不是很清楚,要引起足够的重视。

第四篇:平行线证明练习

田野教育集团一对一辅导中心

证明题练习如图所示,若∠1=52°,问∠C为多少度时,能使直线AB∥CD? 2 如图所示,∠1=45°,∠2=135°,l1∥l2吗?为什么?如图所示,∠1=120°,∠2=60°,问直线a与b有什么关系?

A

B

l1 2 l

3C

1题图

D

a3题图

4 如图,已知直线AB、CD被直线EF所截且∠AGE=46°,∠EHD=134°,那么AB∥

CD吗?说明理由。如图,已知∠1和∠D互余,CF⊥DF,问AB与CD平行吗?如图所示,∠EFB=∠GHD=53°,∠IGA=127°,由这些条件你能找到几对平行线?说说你的理由。

E

4题图

F

F

I

B

D 6题图 F

E B

C

5题图

C D如图,∠BAF=46°,∠ACE=136°,CE⊥CD,问CD∥AD吗?为什么? 8 如图,∠1=∠2,能判断AB∥CD吗?为什么?

若不能判断AB∥DF,你认为还需要再添加一个条件是什么?写出这个条件,并说明你的理由?如图,AB∥CD,EF∥GH,CD与EF相交于点I,试探究∠1与∠2的关系,并说明理由。

F C E 7题图

C

D

D F

C

8题图 9题图

第五篇:平行线的判定和性质专题练习(模版)

七年级下册 第五章

平行线的判定和性质专题练习

1.下列命题:

①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角; ③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等; ⑥经过直线外一点,有且只有一条直线与这条直线平行.其中假命题有()A.1个

B.2个

C.3个

D.4个

2.直线a、b、c是三条平行直线.已知a与b的距离为5cm,b与c的距离为2cm,则a与c的距离为()A.2cm

B.3cm

C.7cm

D.3cm或7cm

3、两直线被第三条直线所截,则()A.内错角相等

B.同位角相等

C.同旁内角互补

D.以上结论都不对

4.如图,直线m∥n,点A在直线m上,点B,C在直线n上,AB=BC,∠1=70°,CD⊥AB于D,那么∠2等于(A.20° B.30° C.32° D.25° 5.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°

B.∠α+∠β﹣∠γ=360° C.∠α﹣∠β+∠γ=180°

D.∠α+∠β﹣∠γ=180° 6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°

B.35°

C.36°

D.40°

第4题图

第5题图

第6题图

7.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是(A.140° B.40°

C.100°

D.180°

8.如图所示,要得到DE∥BC,需要条件()

A.CD⊥AB,GF⊥AB

B.∠DCE+∠DEC=180°

C.∠EDC=∠DCB D.∠BGF=∠DCB

AC

D DEA140°FB

BGC

第7题图

第8题图))

9.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)):

PPPP(1)(2)(3)(4)

从图中可知,小敏画平行线的依据有:()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.()

A.①② B.②③

C.③④

D.①④

10.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是 A.第一次向右拐40°,第二次向左拐40°

B.第一次向右拐50°,第二次向左拐130°

C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130 11.如图,AB∥CD,AF交CD于点O,且OF平分∠EOD,如果∠A=38°,那么∠EOF=___________°。12.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3= °.13.如图,直线l1∥l2,∠α=∠β,∠1=35º,则∠2=

º.第11题图 第12 题图 第13题图

14.如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试说明CD∥AB.15.如图,已知:∠B=∠D+∠E,试说明:AB∥CD. 16.如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.17.如图,直线AD与AB、CD相交于A、D两点,EC、BF与AB、CD交于点E、C、B、F,且∠1=∠2,∠B=∠C,试说明AB∥CD.18.如图所示,已知CE∥DF,说明∠ACE=∠A+∠ABF.

GACDE FB19.如图,直线AB,CD被直线BD,DF所截,AB∥CD,FB⊥DB,垂足为B,EG平分∠DEB,∠CDE=52°,∠F=26°.(1)求证:EG⊥BD;(2)求∠CDB的度数.20.,那么 AB∥CD.试解决下列问题:

如图①,已知∠1+∠2=180°(1)如图②,已知∠1+∠2+∠3=360°,为了证明 AB∥CD,根据三角形的内角和为 180°,可以

连接 AC 构造出三角形,加以解决.请写出推理过程.

(2)如图③,已知∠1+∠2+∠3+∠4=540°,那么 AB 与 CD平行吗?为什么?(3)通过以上两题,你得出了什么规律?试结合图④,谈谈你的发现.

21.已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点

(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.

下载七年级下平行线的判定证明练习精选word格式文档
下载七年级下平行线的判定证明练习精选.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平行线的判定有关证明试题

    平行线的判定 [例1]若∠1=52°,如图2-18,问应使∠C为多少度时,能使直线AB∥CD? [例2]如图2-19,若∠1= ∠4,∠1+∠2=180°,则AB、CD、EF的位置关系如何? 1.如图2-20,∠1=45°,∠ 2=135°,则l1∥......

    平行线的性质和判定综合练习

    初一数学通用版平行线的性质和判定综合练习(答题时间:60分钟)一、选择题1. 点到直线的距离是指A. 从直线外一点到这条直线的垂线B. 从直线外一点到这条直线的垂线段C. 从直线外......

    平行线的判定_练习2(答案)

    1.2平行线的判定 一、课内同步训练 1.如图所示,已知∠B=50°,∠C=50°,B、O、A在一条直线上,OM平分∠AOC,• 则OM∥BC,理由如下: ∵∠COA=∠B+∠C(_________),又∵∠B=50°,∠C=50°(__......

    平行线的证明练习

    练习1、已知,如图AB∥CD,直线EF分别截AB、 CD于点M、N,MG、NH分别是∠EMB与 ∠END的平分线,试说明MG∥NH.。 证明:∵AB∥CD(已知), ∴________=________. ∵MG平分∠EMB(已知), ∴____......

    七年级数学平行线及其判定典型例题

    七年级数学平行线及其判定典型例题 例1.已知直线 由. 分析:这一例题是平行公理的直接应用,但题干部分的几何语句与平行线的传递性的几何语句又相一致,所以学生容易犯不认真读懂......

    初一下平行线判定和性质试题

    平行线判定和性质1.已知如图,指出下列推理中的错误,并加以改正。(1)∵∠1和∠2是内错角,∴∠1=∠2,(2)∵AD//BC, ∴∠1=∠2(两直线平行,内错角相等)(3)∵∠1=∠2,∴AB//CD(两直线平行,内错角相......

    平行线的性质和判定证明练习题

    1.已知如图,∠BMD=∠BAC, ∠1=∠2,EF⊥BC,求证:AD⊥BC2.已知如图,AC⊥BC,CD⊥AB,FG⊥AB, ∠1=∠2,求证:3.已知如图,∠1=∠2,∠C=∠F,求证∠A=∠DDE⊥AC4. 已知如图, AD⊥BC, EF⊥BC,......

    人教版七年级下平行线的三种判定方法说课稿(五篇)

    平行线的三种判定方法说课稿一、教材分析1、教材的地位和作用本课位于人民教育出版社义务教育课程标准实验教科书七年级下册第五章第二节第一课时。主要内容是让学生在充分......