第一篇:人教版七年级下册平行线的判定教案
平行线及其判定 初中数学
教学目标
1.了解平行线的三种判定方法.2.能熟练应用这三种判定方法,判断两条直线是否平行。3.培养学生简单的逻辑推理能力.学情分析
以前学生接触的是一步推理,而且因果关系比较明显。判定定理的推导需要先通过角的关系,找符合判定公理的条件,涉及两步推理,学生需要思考的问题复杂了一些,可能一时适应不了问题的思考方法。教学时注意引导,随时归纳总给使学生逐渐学会思考和分析。根据以前经验,多数学生能积极思考、探究,敢于发表自己的见解;在前面的教学中,曾开展过探究实践活动,全班同学具有初步的小组合作交流的经验 重点难点
重点是平行线的判定方法及运用; 难点是用数学语言表达简单的推理过程 教学过程
【复习回顾】
1、平面内两直线的位置关系是:
2、你还记得平行公理及推论的内容吗? 【情境引入】
你还记得怎样过直线外一点画已知直线的平行线吗? 学生活动:让学生叙述过直线外一点作平行线的步骤; 教师提问:由此你能发现判定两直线平行的方法吗? 思考:在三角板移动的过程中,可以使哪些角相等? 【教学活动】 第一关:动手动脑 师生互动:
在画图过程中,什么角始终保持相等? 由此你能发现判定两直线平行的方法吗? 提问:由此你能发现判定两直线平行的方法吗? 学生讨论并得出结论: 判定方法1 两条直线被第三条直线所截 ,如果同位角相等, 那么这两条直线平行.简单说成:同位角相等, 两直线平行.教师强调书写格式。
同步练习意在深化掌握并熟练运用。第二关:猜想比拼
思考:两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角,由同位角相等可以判定两直线平行.那么,能否利用内错角,或同旁内角来判定两直线平行呢?
第三关:推理验证 提问:
(1)由内错角相等可推出a// b吗? 如何推出? 写出你的推理过程.(2)如果同旁内角互补, 能判定a//b吗? 学生分组讨论,教师巡回指导并肯定学生的成果。师生共同得出结论: 判定方法2 两条直线被第三条直线所截, 如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.判定方法3 两条直线被第三条直线所截, 如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.强调:注意书写格式 第四关:例题解析 教材14页例题 教材14页练习第1题 【练习】课堂练习
多媒体展示练习内容,教师提示下学生独立完成,师生共同订正 课堂小结
通过本节课的学习,你有什么收获,说一说与大家共同分享;你还有哪些困惑说出来我们共同解决。
归纳:
判定两直线平行的方法有以下几种: 同位角相等, 两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行
在平面内,垂直于同一直线的两直线平行平行于同一直线的两直线平行 【作业布置】
教材P15习题5.2第1、2、3、4题.
第二篇:七年级数学下册平行线的判定教案人教版
亿库教育网
http://www.xiexiebang.com
平行线的判定(1)
教学目标:
1、了解推理、证明的基本格式,掌握平行线判定方法的推理过程。
2、学习简单的推理论证说理的方法。
3、通过简单的推理过程的学习,培养学生进行数学推理的习惯和方法,同时培养提高学生“观察-分析-推理-论证”的能力。
教学重点:平行线判定方法1的推理过程及几何解题的基本格式 教学难点:判定定理的形成过程中逻辑推理及书写格式。教学过程:
一、复习引入
1、叙述平行线的性质定理1-3,借助图形用数学语言表达。
2、对顶角相等是成立的,反过来“相等的角是对顶角”也成立吗?
那么我们知道了“两直线平行,同位角相等”是成立的,反过来“同位角相等,两直线平行”是否还成立呢?这就是我们今天所要学习的内容。
二、探究新知
1、观察。P64教材的观察 学生动手量一量,再回答提出的问题。
2、探究
“两直线平行,同位角相等”是成立的,反过来“同位角相等,两直线平行”是否还成立呢?
如下图,两条直线AB、CD被第三条直线EF所截,有一对同位角相等,即
∠END=∠EMB,那么AB与CD平行吗?
过N作直线m平行于AB,则
∠ENG=∠EMB,由于∠END=∠EMB
m G
因此,∠ENG=∠END,从而
直线m与CD重合,因此CD∥AB。
图a
图b 判定方法1 两直线被第三条直线所截,如果有一对同位角相等,那么这两条直线平行。
3、新知应用
P64的例1 如图,已知∠1+∠2=180°,AB与CD平行吗?为什么?
分析:如果要得到平行,只要证明∠2=∠3就可以了。
解:因为∠2与∠1的补角,而∠3是∠1的补角,所以
∠2=∠3,从而AB∥CD(有一对同位角相等,两直线平行)
亿库教育网
http://www.xiexiebang.com
亿库教育网
http://www.xiexiebang.com
P64例2如图,已知∠1=∠2,说明为什么∠4=∠5。
分析:如果∠4=∠5,那么要证明直线a与直线b平行,而要证明直线a与直线b平行,就要证明∠1=∠3 而∠2=∠3,∠1=∠2,所以∠1=∠3。解:因为∠1=∠2(已知条件),∠2=∠3(对顶角相等),所以 ∠1=∠3。
从而,a∥b(同位角相等,两直线平行)因此,∠4=∠5(两直线平行,同位角相等)。
三、小结和练习
1、练习P65的练习1、2小题
2、小结:今天讲的内容是平行线的判定方法,而上节课学习的是平行线的性质定理,它们的条件和结论正好相反,也可以说是互逆的命题。注意它们各自的使用方法,不要用反了这两条定理。
四、布置作业
P68 A组题 第4小题 后记:
亿库教育网
http://www.xiexiebang.com
第三篇:七年级下册数学《平行线的判定经典例题(本站推荐)
平行线的判定
一、知识回顾
1、平行线概念:在同一平面内,两条不想交的直线叫做平行线。记做a∥b
2、两条直线的位置关系:平行和相交。
3、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、平行线的判定
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
二、典型例题
例1:直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()
A.相交 B.平行 C.垂直
D.不确定
解答:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a∥b,故选B.
例2:下列说法中可能错误的是()
A.过一点有且只有一条直线与已知直线平行 B.过一点有且只有一条直线与已知直线垂直 C.两条直线相交,有且只有一个交点
D.若两条直线相交成直角,则这两条直线互相垂直
解答: A、过一点有且只有一条直线与已知直线平行,故本选项正确;
B、应为在同一平面内,过一点有且只有一条直线与已知直线垂直,如果不在同一平面内,则可以做无数条,故本选项错误;
C、两条直线相交,有且只有一个交点,故本选项正确;
D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,本选项正确. 故选B.
例3:下列说法正确的是()
.不相交的两条直线是平行线
B.在同一平面内,两条平行的直线有且只有一个交点 C.在同一平面内,两条直线的位置关系只有平行和相交两种 D.过一点有且只有一条直线与已知直线平行
分析:根据平行线的定义和平行公理及推论,对每个选项进行判断. 解答:A、不相交的两条直线是平行线,错误,应强调在同一平面内.
B、在同一平面内,两条平行的直线有且只有一个交点,错误,在同一平面内,两条平行的直线没有交点.
C、正确.
D、过一点有且只有一条直线与已知直线平行,错误,过直线外一点有且只有一条直线与已知直线平行.
故选C.
例4:(2010•桂林)如图,直线AB、CD被直线EF所截,则∠3的同旁内角是()
A.∠1 B.∠2
C.∠4
D.∠5
分析:解答此题的关键是理解同旁内角的定义:“同旁”指在截线的同侧;“内”指在被截两条线之间.可据此进行判断.
解答:由图知:∠3和∠2在截线EF的同侧,且都在被截直线AB、CD的内侧,所以∠3和∠2是同旁内角,故选B.
例5:(2009•桂林)如图,在所标识的角中,同位角是()
A.∠1和∠2 B.∠1和∠3 C.∠1和∠4 D.∠2和∠3
分析:同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角. 解答:根据同位角、邻补角、对顶角的定义进行判断,、∠1和∠2是邻补角,错误; B、∠1和∠3是邻补角,错误; C、∠1和∠4是同位角,正确; D、∠2和∠3是对顶角,错误.故选C.
例6:(2009•台湾)图中有直线L截两直线L1,L2后所形成的八个角.由下列哪一个选项中的条件可判断L1∥L2()
A.∠2+∠4=180° B.∠3+∠8=180° C.∠5+∠6=180° D.∠7+∠8=180°
分析:结合图形分析两角的位置关系,根据平行线的判定方法判断. 解答:∵∠3+∠8=180°,而∠4+∠8=180°,∴∠3=∠4,∴L1∥L2.(内错角相等,两直线平行). 故选B.
例7:如图所示,下列推理中正确的数目有()
①因为∠1=∠4,所以BC∥AD. ②因为∠2=∠3,所以AB∥CD.
③因为∠BCD+∠ADC=180°,所以AD∥BC. ④因为∠1+∠2+∠C=180°,所以BC∥AD. A.1个 B.2个
C.3个
D.4个
分析:根据平行线的判定方法进行分析判断.要结合图形认真观察,看两个角是哪两条直线被第三条直线所截而形成的角.
解答:①因为∠1=∠4,所以AB∥CD.故此选项错误;
②因为∠2=∠3,所以BC∥AD.故此选项错误;
③因为∠BCD+∠ADC=180°,所以AD∥BC.故此选项正确; ④因为∠1+∠2+∠C=180°,所以AB∥CD.故此选项错误. 故选A.
例8:如图,∠1=30°,∠B=60°,AB⊥AC.
DAB+∠B=多少度?
②AD与BC平行吗?AB与CD平行吗?试说明理由.
分析:(1)由已知可求得∠DAB=120°,从而可求得∠DAB+∠B=180°
(2)根据同旁内角互补两直线平行可得AD∥BC,∠ACD不能确定从而不能确定AB与CD平行.
解答:①∵AB⊥AC,∴∠BAC=90°,又∠1=30°,∴∠BAD=120°,∵∠B=60°,∴∠DAB+∠B=180°(7分).
②答:AD∥BC,AB与CD不一定平行.(3分)理由是:
∵∠DAB+∠B=180° ∴AD∥BC(4分)∵∠ACD不能确定(5分)∴AB与CD不一定平行.(6分)
典型课例
平行线的判定
谯城区城父中心中学:张名
第四篇:七年级下册数学《平行线的判定经典例题
平行线的判定
一、知识回顾
1、平行线概念:在同一平面内,两条不想交的直线叫做平行线。记做a∥b
2、两条直线的位置关系:平行和相交。
3、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、平行线的判定
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
二、典型例题
例1:直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()
A.相交 B.平行 C.垂直
D.不确定
解答:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a∥b,故选B.
例2:下列说法中可能错误的是()
A.过一点有且只有一条直线与已知直线平行 B.过一点有且只有一条直线与已知直线垂直 C.两条直线相交,有且只有一个交点
D.若两条直线相交成直角,则这两条直线互相垂直
解答: A、过一点有且只有一条直线与已知直线平行,故本选项正确;
B、应为在同一平面内,过一点有且只有一条直线与已知直线垂直,如果不在同一平面内,则可以做无数条,故本选项错误;
C、两条直线相交,有且只有一个交点,故本选项正确;
D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,本选项正确. 故选B.
例3:下列说法正确的是()
.不相交的两条直线是平行线
B.在同一平面内,两条平行的直线有且只有一个交点 C.在同一平面内,两条直线的位置关系只有平行和相交两种 D.过一点有且只有一条直线与已知直线平行
分析:根据平行线的定义和平行公理及推论,对每个选项进行判断. 解答:A、不相交的两条直线是平行线,错误,应强调在同一平面内.
B、在同一平面内,两条平行的直线有且只有一个交点,错误,在同一平面内,两条平行的直线没有交点.
C、正确.
D、过一点有且只有一条直线与已知直线平行,错误,过直线外一点有且只有一条直线与已知直线平行.
故选C.
例4:(2010•桂林)如图,直线AB、CD被直线EF所截,则∠3的同旁内角是()
A.∠1 B.∠2
C.∠4
D.∠5
分析:解答此题的关键是理解同旁内角的定义:“同旁”指在截线的同侧;“内”指在被截两条线之间.可据此进行判断.
解答:由图知:∠3和∠2在截线EF的同侧,且都在被截直线AB、CD的内侧,所以∠3和∠2是同旁内角,故选B.
例5:(2009•桂林)如图,在所标识的角中,同位角是()
A.∠1和∠2 B.∠1和∠3 C.∠1和∠4 D.∠2和∠3
分析:同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角. 解答:根据同位角、邻补角、对顶角的定义进行判断,、∠1和∠2是邻补角,错误; B、∠1和∠3是邻补角,错误; C、∠1和∠4是同位角,正确; D、∠2和∠3是对顶角,错误.故选C.
例6:(2009•台湾)图中有直线L截两直线L1,L2后所形成的八个角.由下列哪一个选项中的条件可判断L1∥L2()
A.∠2+∠4=180° B.∠3+∠8=180° C.∠5+∠6=180° D.∠7+∠8=180°
分析:结合图形分析两角的位置关系,根据平行线的判定方法判断. 解答:∵∠3+∠8=180°,而∠4+∠8=180°,∴∠3=∠4,∴L1∥L2.(内错角相等,两直线平行). 故选B.
例7:如图所示,下列推理中正确的数目有()
①因为∠1=∠4,所以BC∥AD. ②因为∠2=∠3,所以AB∥CD.
③因为∠BCD+∠ADC=180°,所以AD∥BC. ④因为∠1+∠2+∠C=180°,所以BC∥AD. A.1个 B.2个
C.3个
D.4个
分析:根据平行线的判定方法进行分析判断.要结合图形认真观察,看两个角是哪两条直线被第三条直线所截而形成的角.
解答:①因为∠1=∠4,所以AB∥CD.故此选项错误;
②因为∠2=∠3,所以BC∥AD.故此选项错误;
③因为∠BCD+∠ADC=180°,所以AD∥BC.故此选项正确; ④因为∠1+∠2+∠C=180°,所以AB∥CD.故此选项错误. 故选A.
例8:如图,∠1=30°,∠B=60°,AB⊥AC.
①∠DAB+∠B=多少度?
②AD与BC平行吗?AB与CD平行吗?试说明理由.
分析:(1)由已知可求得∠DAB=120°,从而可求得∠DAB+∠B=180°
(2)根据同旁内角互补两直线平行可得AD∥BC,∠ACD不能确定从而不能确定AB与CD平行.
解答:①∵AB⊥AC,∴∠BAC=90°,又∠1=30°,∴∠BAD=120°,∵∠B=60°,∴∠DAB+∠B=180°(7分).
②答:AD∥BC,AB与CD不一定平行.(3分)理由是:
∵∠DAB+∠B=180° ∴AD∥BC(4分)∵∠ACD不能确定(5分)∴AB与CD不一定平行.(6分)
第五篇:浙教版七年级数学下册1.3平行线的判定
1.3平行线的判定(2)
【教学目标】
1、使学生掌握平行线的第二、三个判定方法.
2、能运用所学过的平行线的判定方法,进行简单的推理和计算.
【重点】本节教学的重点是第二、三个判定方法的发现、说理和应用.
【难点】问题的思考和推理过程是难点.
【教学过程】
一、从学生原有认知结构提出问题 l
1如图,问l1与l2平行的条件是什么?
l2 在学生回答的基础上再问:三线八角分为三类角,当同位角相等时,两直线平行,那么内错角或同旁内角具有什么关系时,也能判定两直线平行呢?这就是我们今天要学习的问题.(板书课题)
学生会跃跃欲试,动脑思考.
教师引导学生:将内错角或同旁内角设法转化为利用同位角相等.
二、运用特殊和一般的关系,发现新的判定方法
1.通过合作学习,提出猜想.
①若图中,直线AB与CD被直线EF所截,若∠3=∠4,则AB与CD平行吗?你可以从以下几个方面考虑:⑴我们已经有怎样的判定两直线平行的方法?
⑵有∠3=∠4,能得出有一对同位角相等吗? 由此你又获得怎样的判定平行线的方法?
要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法二: 两条直线被第三条直线所截,如果内错角相等,则两条直线平行.
教师并强调几何语言的表述方法∵∠3=∠4 B ∴AB∥CD(内错角相等,两条直线平行)然后,完成“做一做”D
∠1=121°,∠2=120°,∠3=120°。
说出其中的平行线,并说明理由。
②若图中,直线AB与CD被直线EF所截,若∠2+∠4=180°,则AB与CD平行
吗?你可以由类似的方法得到正确的结论吗?
由此你又获得怎样的判定平行线的方法? 要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法三:
两条直线被第三条直线所截,如果同旁内角互补,则两条直线平行.
教师并强调几何语言的表述方法
∵∠2+∠4=180°
∴AB∥CD(同旁内角互补,两条直线平行)
当学生都得到正确的结论后,引导学生猜想:同旁内角互补,两条直线平行. B D B D
三、例题教学,体验新知
例2.如图,∠C+∠A=∠AEC。判断AB与CD是否平行,并说明理由。分析:延长CE,交AB于点F,则直线CD,AB被直线CF所截。这样,我们可以通过判断内错角∠C和∠AFC是否相等,来判定AB与CD是否平行。C C
F
板书解答过程。
提问:能否用不一样的方法来判定AB与CD是否平行?
提示:连结AC。
例3如图∠A+∠B+∠C+∠D=360°,且∠A=∠C,∠B=∠D,那么AB∥CD,AD∥BC.请说明理由。
先让学生思考,以小组为单位进行讨论,然后派出代表发言,学生基本上都能想
到,用同旁内角互补,两条直线平行的判定,但书写难度较大,教师要加以引导说理过程
四、应用举例,变式练习(讲与练结合方式进行教学)
1、课内练习1、2
2、如图 ⑴∠
1=∠A,则GC∥AB,依据是; F ⑵∠3=∠B,则EF∥AB,依据是;
⑶∠2+∠A=180°,则DC∥AB,依据是; B ⑷∠1=∠4,则GC∥EF,依据是;
⑸∠C+∠B=180°,则GC∥AB,依据是;
⑹∠4=∠A,则EF∥AB,依据是;
3、探究活动:有一条纸带如图所示,如果工具只有圆规,请说出你的方法和依据。
提示:可尝试用折叠的方法,与你的同伴交流。
五、小结
1方法时应注意什么问题?
2.在学生回答的基础上,教师总结指出:
(1)学习了3种判定方法.
(2)学习了由特殊到一般,又由一般到特殊的认识客观事物的基本方法.
(3)在平行线的判定问题中,要“有的放矢”,根据不同情况作出选择.
六、作业见作业本