2010年全国高考数学几何证明题

时间:2019-05-13 15:10:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2010年全国高考数学几何证明题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2010年全国高考数学几何证明题》。

第一篇:2010年全国高考数学几何证明题

2010年全国高考数学几何证明题

1.(北京卷理12)如图,⊙O的弦ED,CB的 延长线交于点A.若BD⊥AE,AB=4, BC=2,AD=3,则DE=_______;CE=_______.2.(广东卷理14)如图3,AB,CD是半径为 a的圆O的两条弦,它们相交于AB的中点P,PD2a

3,∠OAP=30°,则CP=______.3.(广东卷文14)如图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CDa

2,点E,F

分别为线段AB,AD的中点,则EF=__________.4.(湖南卷理10)如图1所示,过⊙O外一点P 作一条直线与⊙O交于A,B两点,已知PA=2,点P到⊙O的切线长PT =4,则弦AB的长为________.5.(湖北卷理15)设a>0,b>0,称2ab/a+b a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径做 半圆.过点C作AB的垂线交半圆于D,连结OD,AD,BD.过点C作OD的垂线,垂足为E.则图

中线段OD的长度是a,b的算术平均数,线段________的长度是a,b的几何平均数,线段 _______的长度是a,b的调和平均数.6.(陕西卷理15B)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD/DA= _____.7.(陕西卷文15B)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以

AC为直径的圆与AB交于点D,则BD=______cm.8.(天津卷理14)如图,四边形ABCD是

圆O的内接四边形,延长AB和DC相交于

点P,若PB/PA=1/2,PC/PD=1/3,则BC/AD的值为 ____.9.(天津卷文11)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P。若

PB=1,PD=3,则BC/AD的值为___________.10.(江苏卷21①)AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线

交AB延长线于C,若DA=DC,求证:AB=2BC

11.(辽宁卷理22)如图,ABC的角平分线AD的延长线交它的外接圆于点E

(I)证明: ABEADC.(II)若ABC的面积S

12.(全国Ⅰ新卷理22文22)如图:已知圆上的,过C点的圆的切线与BA的延长线交 ACBD弧12ADAE,求∠BAC的大小.于 E点,证明:

(Ⅰ)ACEBCD

2(Ⅱ)BCCDBE

第二篇:2010年全国高考数学几何证明题答案

2010年全国高考数学几何证明题

1.(北京卷理12)如图,⊙O的弦ED,CB的延长线交于点A.若BD⊥AE,AB=4, BC=2, AD=3,则DE=_______;CE=_______.【答案】

5;解析:首先由割线定理不难知道AB·AC=AD·AE,于是AE=8,DE=5,又BD⊥AE,故∠C=90°.由勾股定理可知,CEAEAC

28,故CE

2.(广东卷理14)如图3,AB,CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PDOAP=30°,则CP=______.【答案】

98a

2a

3,∠

解析:因为点P是AB的中点,由垂径定理知, OP⊥AB.在Rt△OPA中,BPAPacos30BP·AP=CP·DP,即

a

aCP

a,由相交线定理知,98

a,所以CP

a.3.(广东卷文14)如图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB,AD的中点,则EF=__________.2a

【答案】

a

解析: 结DE,可知△DEA为直角三角形,EF为Rt△DEA斜边AD上的中线,所以EF等于AD的一半.4.(湖南卷理10)如图1所示,过⊙O外一点P作一条

直线与⊙O交于A,B两点,已知PA=2,点P到⊙O的切线长PT =4,则弦AB的长为________.【答案】6

解析:根据切线长定理 PT所以AB=PB-PA=8-2=6

PAPB,PB

PT

PA

162

8

5.(湖北卷理15)设a>0,b>0,称2ab/a+b为a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径做半圆.过点C作AB的垂线交半圆于D,连结OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段________的长度是a,b的几何平均数,线段 _______的长度是a,b的调和平均数.【答案】CDDE

解析:(1)Rt△ADB中DC为高,则由射影定理可得:

CD=

ACBCab故CD

a、b的几何平均数.

(2)

2ab

ab

ACBCAB

2

CD

OD

DE,故DE为a、b的调和平均数.6.(陕西卷理15B)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD/DA= _________.【答案】

169

解析:连CD,易知CD是Rt△ABC斜边上的高,∴由射影定理得,BC²=BD·AB,AC²=AD·AB.故所求

BDDA

BDABDAAB

BCAC

2

4322

169

.7.(陕西卷文15B)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=___cm.【答案】

55,又由切割线定理得BC ² =BD·AB,解析:

∵易知AB

∴ 4² =BD·5BD

165

8.(天津卷理14)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若PB/PA=1/2,PC/PD=1/3,则BC/AD的值为

________.【答案】

6解析:因为ABCD四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PDA,所以

PBPD

PCPA

BCAD,设PC=x,PB=y,3y

则PD=3x,PA=2y,由所以

y3x

x2y

6,得x.,BCAD

PCPA

x2y

9.(天津卷文11)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BC/AD的值为___________.【答案】

1【解析】因为ABCD四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PDA,所以

BCAD

PBPD

10.(江苏卷21①)AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证:AB=2BC解析 :

(方法一)证明:连结OD,则:OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,∠DOC=∠DAO+∠ODA=2∠DCO,所以∠DCO=30 º,∠DOC=60 º,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC.(方法二)证明:连结OD、BD.因为AB是圆O的直径,所以∠ADB=90º,AB=2 OB.因为DC 是圆O的切线,所以∠CDO=90º.又因为DA=DC,所以∠DAC=∠DCA,于是△ADB≌△CDO,从而AB=CO.即2OB=OB+BC,得OB=BC.故AB=2BC.11.(辽宁卷理22)如图,ABC的角平分线AD的延长线交它的外接圆于点E

(I)证明: ABEADC.(II)若ABC的面积S

ADAE,求∠BAC的大小.证明(Ⅰ)∵∠EAB=∠CAD, ∠BEA=∠ACD∴ABEADC.解(Ⅱ)ABEADC

S

ABAD

,即ABACADAE

ACAE

ABACsinBAC

ADAEsinBAC

ADAE

sinBAC1BAC90(三角形内角)

12.(全国Ⅰ新卷理22文22)如图:已知圆上

,过C点的圆的切线与BA的延长线交于 E点,证明:ACBD的弧

(Ⅰ)ACEBCD(Ⅱ)BCCDBE

, ACBD解:(I)∵

∴∠BCD=∠ABC.(易知四边形

ACDB是等腰梯形)

又∵EC与圆相切于点C,故∠ACE=∠ABC,∴∠ACE=∠BCD.(II)∵∠CAE=∠BDC, ∠CEA=∠ABC+∠ACB=∠ACE+ACB=∠BCE

∴∠BDC=∠BCE,而∠BCD=∠BCE ∴△BCD∽△BCE 

BCBE

CDBC

BC

CDBE

第三篇:初中数学几何证明题

初中数学几何证明题

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。

一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可龋我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

第四篇:中考数学几何证明题

中考数学几何证明题

在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;

(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;

第一个问我会,求第二个问。需要过程,快呀!

连接GC、BG

∵四边形ABCD为平行四边形,∠ABC=90°

∴四边形ABCD为矩形

∵AF平分∠BAD

∴∠DAF=∠BAF=45°

∵∠DCB=90°,DF∥AB

∴∠DFA=45°,∠ECF=90°

∴△ECF为等腰Rt△

∵G为EF中点

∴EG=CG=FG

∵△ABE为等腰Rt△,AB=DC

∴BE=DC

∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°

∴△BEG≌△DCG

∴BG=DG

∵CG⊥EF→∠DGC+∠DGB=90°

又∵∠DGC=∠BGE

∴∠BGE+∠DGB=90°

∴△DGB为等腰Rt△

∴∠BDG=45°

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

第五篇:初中数学几何证明题

平面几何大题 几何是丰富的变换

多边形平面几何有两种基本入手方式:从边入手、从角入手

注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方式?

难题

下载2010年全国高考数学几何证明题word格式文档
下载2010年全国高考数学几何证明题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中考数学经典几何证明题

    2011年中考数学经典几何证明题(一)1.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点M、N,试判断△OMN的形状,并加以证明;(2)如图2,在......

    初一数学几何证明题

    初一数学几何证明题一般认为,要提升数学能力就是要多做,培养兴趣。事实上,兴趣不是培养出来的,而是每次考试都要考得好,产生信心,才能生出兴趣来。所以数学不好,问题不在自信,而是要......

    几何证明题大全

    几何证明题1.在三角形ABC中,BD,CE是边AC,AB上的中点,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?答题要求:请写出详细的证明过程,越详细越好......

    几何证明题

    几何证明题集(七年级下册)姓名:_________班级:_______一、互补”。ED二、 证明下列各题:1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D 3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD 1......

    中考数学几何证明题「含答案」

    重庆中考(往届)数学24题专题练习1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.在BG上取BH=......

    数学几何证明题(提高篇)

    1.已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.2. 已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.3.如图,分别以......

    初二数学几何证明题(5篇可选)

    1. 在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)......

    中考数学几何证明题(5篇)

    中考几何证明题一、证明两线段相等1、真题再现18.如图3,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,2.如图,在△ABC中,点P是边AC上的一个动点,过点P作直线MN∥BC,设MN交∠BCA的平分线于点......