初二-初三数学衔接八:配方法

时间:2019-05-13 11:08:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初二-初三数学衔接八:配方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初二-初三数学衔接八:配方法》。

第一篇:初二-初三数学衔接八:配方法

初二-初三函数衔接之

第八节:配方法

【知识构建】

一、自主预习

1、根据完全平方公式填空:

⑴ x²+6x+9=﹙﹚²⑵ x²-8x+16=﹙﹚²

⑶ x²+10x+﹙﹚²=﹙﹚²⑷ x²-3x +﹙ ﹚²=﹙﹚²

2、解下列方程:

(1)(x+3)²=25;(2)12(x-2)²-9=0.

23、你会解方程x-4x+3=0吗?你会将它变成(x+m)=n(n为非负数)的形式吗?

二、归纳提升:

练一练 :配方.填空:

(1)x+6x+()=(x+);

(2)x-8x+()=(x-);

(3)x+222223x+()=(x+)2;

2从这些练习中你发现了什么特点?

____________________________________________________________________。

三、合作交流

用配方法解下列方程:

(1)x-6x-7=0;(2)x+3x+1=0.解(1)移项,得x-6x=____.方程左边配方,得x-2·x·3+__=7+___,即(______)=____.所以x-3=____.原方程的解是x1=_____,x2=_____.22222

2(2)移项,得x+3x=-1.方程左边配方,得x+3x+()=-1+____,即_____________________

所以___________________

原方程的解是:x1=______________x2=___________

四、总结归纳:

(1)配方法就是通过配成完全平方形式解一元二次方程的方法.当二次项系数为1时,配

2方的关键做法是在方程两边加______________的平方,如用配方法解方程x+5x=5时,就

应该把方程两边同时加上________.

(2)用配方法解二次项系数为1的一元二次方程的一般步骤:

(1)移项:把________移到方程的右边;

(2)配方:方程两边都加上_______________的平方;

(3)开方:根据__________意义,方程两边开平方;

(4)求解:解一元一次方程;(5)定解:写出原方程的解.

【例题讲解】

1、解下列方程:

(1)x+10x+9=0;(2)x-x-222227=0.

4总结归纳:

(1)配方法就是通过配成完全平方形式解一元二次方程的方法.当二次项系数为1时,配

2方的关键做法是在方程两边加______________的平方,如用配方法解方程x+5x=5时,就

应该把方程两边同时加上________.

(2)用配方法解二次项系数为1的一元二次方程的一般步骤:

(1)移项:把________移到方程的右边;

(2)配方:方程两边都加上_______________的平方;

(3)开方:根据__________意义,方程两边开平方;

(4)求解:解一元一次方程;(5)定解:写出原方程的解.

【对应练习】

22(1)x+8x-2=0(2)x-5x-6=0.【深入探究】

2、用配方法解下列方程:

(1)4x12x10(2)3x2x30

【对应练习】

解下列方程:

22(1)2x+6=7x;(2)2x+7x-4=0;

(3)6y(y+1)=y-1.(4)3x2+8x―3=0

【课堂总结】

用配方法解二次项系数为1的一元二次方程的一般步骤:

(1)移项:把________移到方程的右边;

(2)系数化为1:方程左右两边同时除以.(2)配方:方程两边都加上_______________的平方;

(3)开方:根据__________意义,方程两边开平方;

(4)求解:解一元一次方程;(5)定解:写出原方程的解.

【达标测试】

1.用配方法解方程2xx=1时,方程的两边都应加上()

A

22B.54C

D.5 16

2.下列方程中,一定有实数解的是().

A.x+1=0B.(2x+1)=0C.(2x+1)+3=0D.(2222212x-a)=a 23.x+6x+______=(x+______);

22x-5x+______=(x-______).

224.无论x、y取任何实数,多项式x+y-2x-4y+16的值总是_______数.

5.用配方法解方程.

(1)x-2x-2=0;(2)x+3

=x;

22(3)9y-18y-4=0;(4)6x-x=12.

【拓展延伸】

已知代数式x-5x+7,先用配方法说明,不论x取何值,这个代数式的值总是正数;再求出当x取何值时,这个代数式的值最小,最小值是多少?

222

第二篇:初三数学配方法练习

初三数学配方法综合练习

1、求证:无论m取什么实数时,总有m2

+4m+5是正数。

2、小李家今天来了一位客人,小李问这位叔叔:“是你的年龄大,还是我爸爸的年龄大?”

这位叔叔说:“你爸爸的年龄是你的平方数,我的年龄是你的6倍少10,你说谁的年龄大呢?”你能帮小李解答这个问题吗?

3、阅读下面材料,完成填空。

我们知道x2+6x+9可以分解因式,结果为(x+3)2,其实x2+6x+8也可以通过配方法分解因式,其过程如下:

x2+6x+8= x2+6x+9–9+8

=(x+3)2–1

=(x+3+1)(x+3–1)=(x+4)(x+2)

(1)请仿照上述过程,完成以下练习:

x2+4x–5=[x+(_____)][x+(_____)] x2–5x+6=[x+(_____)][x+(_____)] x2–8x–9=[x+(_____)][x+(_____)]

(2)请观察横线上所填的数,这两个数与一次项系数、常数项有什么关系?

若有x2+(p+q)x+pq=(_____)(_____)你能找出下述式子中的p和q吗? x2+3x+2=(_____)(_____)x2–x–20=(_____)(_____)

(4)用分解因式法解方程

x2–28x+96=0x2–130x+4000=0

【练习】

1、若分式x25x4

x1的值为0,则的值为()

(A)-1或-4(B)-1(C)-4(D)无法确定

2、将方程2x2+4x+1=0配方后,得新方程为()(A)(2x+2)2–3=0

(B)(x+2)2–1

2=0

(C)(x+1)2–

1=0

(D)(2x+2)2+3=03、一个三角形两边的长是3和7,第三边的长是a,若满足a2–10a+21=0,则这

个三角形的周长是()

(A)13或17(B)13(C)17(D)以上答案都不对

4、当x等于_____时,代数式x2–13x+12的值等于42。

5、已知方程x2-(m+1)x+(2m-3)=0

(1)求证:无论m为什么实数时,方程总有两个不相等的实数根。(提示:当

b2-4ac﹥0时,一元二次方程总有两个不相等的实数根)

(2)当b2-4ac满足什么条件时,一元二次方程没有实数根?请写出一个没有实

数根的一元二次方程。

第三篇:数学学习法配方法

数学学习法——配方法

释义:在数学式变换中,根据需要把有关字母的项对照公式(ab)2a22abb2,补上恰当的项以配成完全平方的形式,这种方法就叫做配方法,配方法的应用常见于:

(1)分解因式;

(2)化简二次根式(示例);

(3)证明等式和不等式:

(4)解方程(组)和不等式;

(5)求函数的最值;

(6)解解析几何问题,等等。

示例:简化

5x4x1x6x1

22(x12)(x13)解原式

52x1,(1x3)1,(3x8)

2x15,(x8)

第四篇:配方法专题探究

配方法专题探究

例1:填空题:

1.将二次三项式x2+2x-2进行配方,其结果为

2.方程x2+y2+4x-2y+5=0的解是。

分析:利用非负数的性质

3.已知M=x2-8x+22,N=-x2+6x-3,则M、N的大小关系为。分析:利用减法

4.用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式。

5.设方程x2+2x-1=0的两实根为x1,x2,则(x1-x2)2。

6.已知方程x2-kx+k=0的两根平方和为3,则k的值为。

分析:根与系数的关系,整体代入法

7.若x、y为实数,且x2y3(2x3),则y1的值等于。x

1分析:整理形式,非负数的应用。

拓展练习题:

***1.完全平方式是_______项式,其中有_____完全平方项,________•项是这两个数(式)

乘积的2倍.

****2.x2+mx+9是完全平方式,则m=_______.

分析:全面考虑

3.4x2+12x+a是完全平方式,则a=________.

分析:可以用判别式的方法

4.把方程x2-8x-84=0化成(x+m)2=n的形式为().

A.(x-4)2=100B.(x-16)2=100C.(x-4)2=84D.(x-16)2=8

45.已知△ABC的三边分别为a、b、c,且a2+b2+c2=ab+bc+ac,则△ABC的形状为。分析:重新组合,正确分割。

6.如果二次三项次x2-16x+m2是一个完全平方式,那么m的值是().

A.±8B.4C.-

D.±

分析:可以用代入验证法

7.用配方法解方程:(1)2x2-x=0;(2)x2+3x-2=0.

8.判断题.

(1)x2+1522x-=(x+)2+()993

3(2)x2-4x=(x-2)2+4()

(3)121y+y+=(y+1)2()2

29.已知(x2+y2)(x2+y2+2)-8=0,则x2+y2的值是().

A.-4B.2C.-1或4D.2或-

4分析:合情推理,十分重要。

10.用配方法说明:-3x2+12x-16的值恒小于0.

11.阅读题:解方程x2-4│x│-12=0.

解:(1)当x≥0时,原方程为x2-4x-12=0,配方得(x-2)2=16,两边平方得x-2=±4,∴x1=6,x2=-2(不符合题意,舍去).

(2)当x<0时,原方程为x2+4x-12=0,配方得(x+2)2=16,两边开平方得x+2=±4,∴x1=-6,x2=2(不符合题意,舍去),∴原方程的解为x1=6,x2=-6.

参照上述例题解方程x2-2│x-1│-4=0.

分析:分类讨论,是全面分析的必要方法。

12.设代数式2x2+4x-3=M,用配方法说明:无论x取何值时,M总不小于一定值,并求出该定值.

分析:极值问题,应该引起重视。

提高训练题:

1、求方程x2+y2+2x-4y+5=0 的解x, y.分析:转化成为特殊形式

2、因式分解:a2b2-a2+4ab-b2+1.对应练习:因式分解:

①x4+x2y2+y4 ;②x2-2xy+y2-6x+6y+9 ;③x4+x2-2ax-a2+1.例

3、化简下列二次根式: ①74;②2;③4322.分析:化简的关键是把被开方数配方

4、求下列代数式的最大或最小值:

① x2+5x+1;② -2x2-6x+1.对应练习:求下列代数式的最大或最小值:

①2x2+10x+1 ;②-12x+x-1.2例

5、解下列方程:

①x4-x2+2xy+y2+1=0 ;②x2+2xy+6x+2y2+4y+10=0.对应练习:解方程:

①x2-4xy+5y2-6y+9=0;②x2y2+x2+4xy+y2+1=0 ;③5x2+6xy+2y2-14x-8y+10=0.例

6、求方程 x2+y2-4x+10y+16=0的整数解

对应练习:求下列方程的整数解:

①(2x-y-2)2+(x+y+2)2=5;②x2-6xy+y2+10y+25=0.练习:

1、因式分解:①x4+x2y2+y4 ;②x2-2xy+y2-6x+6y+9 ;③x4+x2-2ax-a2+1.2、求下列代数式的最大或最小值:①2x2+10x+1 ;②-12x+x-1.23、已知:a2+b2+c2=111,ab+bc+ca=29.求:a+b+c的值.

第五篇:配方法习题

配方法习题

一、选择题

1.下列哪个不是完全平方式?()

A、2x2B、x2-6x+9C、25x2-10x+1D、x2+22x+1

212.以配方法解3x2+4x+1=0时,我们可得下列哪一个方程式?()

252121A、(x+2)2=3B、(3x+)2=、(x+2=D、(x+2=343

33.若2x2-3x+1加上一数k后,成为完全平方式,则k=()

A、18B、7C、116D、44.想将x2+32 x配成一个完全平方式,应该加上下列那一个数?()

A、34B、9994C、8、165.下列哪个不是完全平方式?()

A、x2+4B、x2+4x+4C、4x2+4x+1D、x2+x+1

4二、填空题

1.将方程式x2-4x+1=0配成(x+a)2=b之形式则a+b=___________

2.填入适当的数配成完全平方式x2-1+____________=(x-)

223.已知一元二次方程式x2-2x-1=0的解为x=a±b 则a-b=_______

三、利用配方法解下列一元二次方程式

3x2-8x+3=0。ax2-2bx+c=0(a>0,b2-ac≧0)

3x2-8x+3=03x2+11x+2=0。

x2+2x-1=03x2-8x+3=0

一、选择题(共56分,每小题14分):

1、2x^2+4x+10=12中,可以配方得到_______

A、2(x+1)^2=

3B、2(x+2)^2=

3C、(2x+1)^2=

3D、(2x+1)^2=

5.2、x^2+4x+3=-1的结果是_______

A、x=-

2B、x=

2C、无解

D、此题有两个根

.3、对于关于x的一元二次方程ax^2+bx+c=0(a不为0,a,b,c是常数)进行配方,得到_______

A、(x+b/a)^2(c/a^2)=-b/a

C、(x+b/2a)^2 =(b^2/4a^2)-c/a

D、对于不同的数字没有唯一表达式。

.4、对于关于x的方程(px+q)^2=m的根的判断,其中有可能正确的有_______

(1)x为任意实数,(2)x1=x2=q/p,(3)当m<0时,方程无解

A、没有正确的B、(2)(3)正确

C、只有(3)正确

D、(1)(3)正确

.二、解答题(共46分,第5题18分,第6题28分)

5、请用配方法解方程 x^2+4x+3=156、对于关于x的方程 mx^2+nx+q=0,将其化简成x=?的形式。

一、填空题(1×28=28)

_____ 个.2、单项式-7a2bc的系数是______, 次数是______.3、多项式3a2b2-5ab2+a2-6是_____次_____项式,其中常数项是_______.4、3b2m•(_______)=3b4m+1-(x-y)5(x-y)4=________(-2a2b)2÷(_______)=2a5、(-2m+3)(_________)=4m2-9(-2ab+3)2=_____________

1、下列代数式中:①3x+5y ②x2+2x+y2 ③0 ④-xy2 ⑤3x=0 ⑥ 单项式有 _____个,多项式有

6、如果∠1与∠2互为补角,∠1=72º,∠2=_____º ,若∠3=∠1,则∠3的补角为_______º,理由是__________________________.7、在左图中,若∠A+∠B=180º,∠C=65º,则∠1=_____º,A 2 D ∠2=______º.B C8、在生物课上,老师告诉同学们:“微生物很小,枝原体直径只有0.1微米”,这相当于________________米(1米=106微米,请用科学记数法表示).9、在进行小组自编自答活动时,小芳给小组成员出了这样一道题,题目:我国古代数学家祖冲之发现了圆周率π=3.1415926……,取近似值为3.14,是精确到_______位,有______个有效数字,而小明出的题是:如果一年按365天计算,那么,一年就有31536000秒,精确到万位时,近似数是_____________秒,有______个有效数字.10、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则P(小明被选中)= ________ , P(小明未被选中)=________.11、随意掷出一枚骰子,计算下列事件发生的概率标在下图中.⑴、掷出的点数是偶数 ⑵、掷出的点数小于7

⑶、掷出的点数为两位数 ⑷、掷出的点数是2的倍数

0 1/2

1不可能发生 必然发生

二、选择题(2×7=14)

1、今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x2+3xy-y2)-(-x2+4xy-y2)=

-x2_____+y2空格的地方被钢笔水弄污了,那么空格中的一项是()

A、-7xy B、7xy C、-xy D、xy2、下列说法中,正确的是()

A、一个角的补角必是钝角 B、两个锐角一定互为余角

C、直角没有补角 D、如果∠MON=180º,那么M、O、N三点在一条直线上

3、数学课上老师给出下面的数据,()是精确的A、2002年美国在阿富汗的战争每月耗费10亿美元

B、地球上煤储量为5万亿吨以上

C、人的大脑有1×1010个细胞

D、这次半期考试你得了92分

4、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()

A、B、C、D、5、已知:∣x∣=1,∣y∣= ,则(x20)3-x3y2的值等于()

A、-或-B、或 C、D、-

6、下列条件中不能得出a‖b 的是()c

A、∠2=∠6 B、∠3+∠5=180º 1 2 a

C、∠4+∠6=180º D、∠2=∠8 5 6 b7、下面四个图形中∠1与∠2是对顶角的图形有()个

A、0 B、1 C、2 D、3三、计算题(4×8=32)

⑴-3(x2-xy)-x(-2y+2x)⑵(-x5)•x3n-1+x3n•(-x)

4⑶(x+2)(y+3)-(x+1)(y-2)⑷(-2m2n)3•mn+(-7m7n12)0-2(mn)-4•m11•n8

⑸(5x2y3-4x3y2+6x)÷6x,其中x=-2,y=2 ⑹(3mn+1)(3mn-1)-(3mn-2)

2用乘法公式计算:

⑺ 9992-1 ⑻ 20032

四、推理填空(1×7=7)

A 已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠

2E 求证:CD⊥AB

F 证明:∵DG⊥BC,AC⊥BC(___________)

D ∴∠DGB=∠ACB=90º(垂直的定义)

∴DG‖AC(_____________________)

B C ∴∠2=_____(_____________________)

∵∠1=∠2(__________________)∴∠1=∠DCA(等量代换)

∴EF‖CD(______________________)∴∠AEF=∠ADC(____________________)∵EF⊥AB ∴∠AEF=90º ∴∠ADC=90º 即CD⊥AB

五、解答题(1题6分,2题6分,3题⑴2分,⑵2分,⑶3分,总19分)

1、小康村正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?

2、已知:如图,AB‖CD,FG‖HD,∠B=100º,FE为∠CEB的平分线,求∠EDH的度数.A F C

E

B H

G

D3、下图是明明作的一周的零用钱开支的统计图(单位:元)

分析上图,试回答以下问题:

⑴、周几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?

⑵、哪几天他花的零用钱是一样的?分别为多少?

⑶、你能帮明明算一算他一周平均每天花的零用钱吗?

能力测试卷(50分)

(B卷)

一、填空题(3×6=18)

1、房间里有一个从外表量长a米、宽b米、高c米的长方形木箱子,已知木板的厚度为x米,那么这个木箱子的容积是________________米3.(不展开)

2、式子4-a2-2ab-b2的最大值是_______.3、若2×8n×16n=222,则n=________.4、已知 则 =__________.5、一个小男孩掷一枚均匀的硬币两次,则两次均朝上的概率为_________.6、A 如图,∠ABC=40º,∠ACB=60º,BO、CO平分∠ABC和∠ACB,D E DE过O点,且DE‖BC,则∠BOC=_______º.B C

二、选择题(3×4=12)

1、一个角的余角是它的补角的,则这个角为()

A、60º B、45º C、30º D、90º

2、对于一个六次多项式,它的任何一项的次数()

A、都小于6 B、都等于6 C、都不小于6 D、都不大于63、式子-mn与(-m)n的正确判断是()

A、这两个式子互为相反数 B、这两个式子是相等的C、当n为奇数时,它们互为相反数;n为偶数时它们相等

D、当n为偶数时,它们互为相反数;n为奇数时它们相等

4、已知两个角的对应边互相平行,这两个角的差是40º,则这两个角是()

A、140º和100º B、110º和70º C、70º和30º D、150º和110º

三、作图题(不写作法,保留作图痕迹)(6分)

利用尺规过A点作与直线n平行的直线m(不能用平推的方法作).A •

n

四、解答题(7×2=14)

1、若多项式x2+ax+8和多项式x2-3x+b相乘的积中不含x2、x3项,求(a-b)3-(a3-b3)的值.3、如图,已知AB‖CD,∠A=36º,∠C=120º,求∠F-∠E的大小.A B

E

F

C D

下载初二-初三数学衔接八:配方法word格式文档
下载初二-初三数学衔接八:配方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    配方法含答案

    配方法1、方程6x2=18的根是__________;已知2(x-3)2=72,则x的值是__________.2、若方程x2-6x+5=0可化为(x+m)2=k的形式,则m=__________,k=__________.3、一元二次方程x2-2x-3=0的根是_______......

    初三 数学 一元二次方程解法练习题 配方法 公式法 分解因式法

    配 方 法1、x2 2x80 2、x2 42x 3、3y2 6y240 4、4x27x205、12 x2 2x90 6、2x23x50 7、2x2 5x30 8、用配方法证明:方程x2 x10无解 9、用配方法证明:方程x2x10的值恒大于零 公......

    初三年级语文(中考句子的衔接训练八)[推荐]

    初三年级语文(中考句子的衔接训练八)一、句子的衔接 一个完整的意思,常常需要好几句话才能表达清楚。把若干句子组织在一起的时候,要注意句子之间的衔接。也就是要句与句之间连......

    1.2.2配方法(推荐五篇)

    1.2.2配方法(1)教学案 学习目标 1、能够用配方法解二次项系数为1的一元二次方程 体验学习一、探究新知 问题1:下面两个方程同学们愿意解哪一个?,这两个方程有联系吗? 二、课堂练......

    配方法讲解练习

    过程 1.转化: 将此一元二次方程化为a^2;+bx+c=0的形式(即一元二次方程的一般形式) 2.移项: 常数项移到等式右边 3.系数化1: 二次项系数化为1 4.配方: 等号左右两边同时加上一次项......

    配方法的应用(精选合集)

    配方法的应用 11.若把代数式x22x3化为(xm)2k的形式,其中m、 k为常数,则m+k=. 4. 用配方法将代数式a24a5变形,结果正确的是 A.(a2)21B.(a2)25C.(a2)24D.(a2)29 18. 已知二次函数y......

    配方法教案[合集五篇]

    一元二次方程的解法--配方 一 教学目标 1、了解什么是配方法; 2、会用配方法准确而熟练解一元二次方程; 3、理解配方法的关键、基本思想和步骤; 4、体会转化、类比、降次的思想......

    配方法的妙用(范文)

    配方法的妙用 1、配方的定义:配方是把一个多项式经过适当变形配成完全平方式的恒等变形,是一种很重要、很基本的数学方法;如将(a+b)2=a2+2ab+b2灵活运用,可得到多种基本配方形式......