数学:7.2《二元一次方程组的解法》(第5课时)教案(华东师大版七年级下)

时间:2019-05-13 11:09:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学:7.2《二元一次方程组的解法》(第5课时)教案(华东师大版七年级下)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学:7.2《二元一次方程组的解法》(第5课时)教案(华东师大版七年级下)》。

第一篇:数学:7.2《二元一次方程组的解法》(第5课时)教案(华东师大版七年级下)

7.2 一元二次方程组的解法

------第五课时(习题课)

教学目的1.使学生进一步理解二元一次方程(组)的解的概念。

2.使学生能够根据题目特点熟练地选用代入法或加减法解二元一次方程组。

教学过程

一、复习

1.什么是二元一次方程,二元一次方程组以及它的解?

2.解二元一次方程组有哪两种方法?它们的实际是什么?

3.举例说明解二元一次方程组什么情况下用代人法,什么情况下用加减法?

[当方程组中两个方程的某个未知数的系数的绝对值为l或有一个方程的常数项是。时,用代人法;当两个方程中某人未知数的系数的绝对值相等或成整数倍时,用加减法。)

二、课堂练习

1.方程2x+39=3与下面哪个方程所组成的方程组的解是=-1

A.41+6y=-6B.x-2y=5

C.3x+4y=4D.以上都不对

2-7y=7的解是否满足方程2x+3y=-5

+2y=2

16[满足,解法一,先求出方程组的解为把x,y值代入方11

29y=-11

1629程2x+3y=-5的左边,左边=2×+3×(-)=-5=右边,解法二,不用求解,因为方程1111

2x+3y=-5,是方程组中的第二个方程减去第一个方程得到的,所以方程组的解必满足方程2x+3y=-5]

3.解下列方程组应消哪个元,用哪一种方法较简便?

2x-3y=-5①[消x,用代入法,43x=2y②由②得x= y 再代入①]

3(2)+3y=5①[消x用加减法,②①×②-②]

(3)①[整体代入,消y,-2x=-2

5②由①得3x+2y=2代入②]

4.解方程组

3x+2z=10②

x+1

3y-3

4①

x-2

4-y-3= 1

12②

x+yx-y

610 =3①

x-3

4y-3

3-1 ②

探索简便方法:

(1)可以用加减法,①-②×2,也可以用代人法,由②得3x=l0-2x,代人①得×(10-2z)+5z=25

(2)-y=2③ 除用加减法解外。注

-4y=-2 ④

意到这两个方程的常数项互为相反数,因此③+④得

7x-7y=0即x=y,再用代入法求解。

(3)可以与(2)一样先把原方程组整理,也可以直接加减.5.用适当的方法解方程组

xy1

322(3)2x-yx-y

2三、作业

教科书第39页复习题l、2、①②③。

第二篇:七年级下《二元一次方程组》教案

七年级下《二元一次方程组》教案

一内容和内容解析

1.内容

二元一次方程,二元一次方程组概念

2.内容解析

二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。直接设两个未知数,列方程,方程组更加直观,本章就从这个想法出发引入新内容.

本节课一以引言中的问题开始,引导学生思考“问题中包含的等量关系”以及“设两个未知数后如何用方程表示等量关系”.继而深入探究二元一次方程,二元一次方程组的解.

本节课的教学重点是:二元一次方程,二元一次方程组的概念

二、目标和目标解析

1.教学目标

(1)会设两个未知数后用方程表示等量关系列二元一次方程,二元一次方程组.

(2)理解解二元一次方程,二元一次方程组的解的概念.

2.教学目标解析

(1)学生能掌握设两个未知数后,分析问题中包含的等量关系”以及“用方程表示等量关系”.

(2)要让学生经历探究的过程.体会二元一次方程组的解,二元一次方程组的解是实际意义.

三、教学问题诊断分断

1.学生过去已遇到二元问题,但只设一个未知数,再表示出另一个未知数,用一元一次方程解决.现在如何引导学生设两个未知数。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现一元一次方程向二元一次方程组转化的思路

2.结合一元一次方程的解向二元一次方程,二元一次方程组的解转化,学习知识的迁移.

本节教学难点:

1.把一元向二元的转化,设两个未知数.结合实际问题进行分析,列二元一次方程,二元一次方程组.

2.二元一次方程组的解的意义

四、教学过程设计

1.创设情境,提出问题

问题1篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

师生活动:学生回答:能。设胜x场,负场。根据题意,得2x+=16

x=6,则胜6场,负4场

教师追问:你能根据两个问题中的等量关系设两个未知数列出二个反映题意的方程吗?

师生活动:学生回答:能。设胜x场,负y场。根据题意,得x+y=10,2x+y=16.

教师归纳:像这样,每个方程都含有两个未知数(x和y)并且含有未知数的项的次数都是1的方程叫做二元一次方程。

设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,转变思路,再列二元一次方程,为后面教学做好了铺垫.

问题2:对比两个方程,你能发现它们之间的关系吗?

师生活动:通过对实际问题的分析,认识方程组中的两个x,y都是这个队的胜,负场

数,它们必须同时满足这两个方程,这样,连在一起写成

就组成了一个方程组。这个方程组中每个方程都含有两个未知数(x和y)并且含有未知数的项的次数都是1,像这样的方程组叫做二元一次方程组。

设计意图:从实际出发,引入方程组的概念,切合学生的认知过程。

问题3:探究

满足了方程①,且符合问题的实际意义的x,y的值有哪些?把它们填入表中

x

y

上表中哪些x,y的值还满足方程②?

学生小组合作完成。

教师归纳:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.一般地,二元一次方程组两个方程的公共解,叫做二元一次方程组的解

设计意图:类比一元一次方程的解,学习二元一次方程的解,二元一次方程组的解。

2.应用新知,提升能力

例1把一个长20m的铁丝围成一个长方形。如果一边长为xm,它的邻边为ym.求

x和y满足的关系式;

当x=15时,y的值;.

当y=12时,x的值

师生活动:小组讨论,然后每组各派一名代表上黑板完成.

设计意图:借助本题,充分发挥学生的合作探究精神通过比较,进一步体会二元一次方程及二元一次方程的解的意义.

3加深认识,巩固提高

练习:一条船顺流航行,每小时行20km,逆流航行,每小时行16km.求船在静水中的速度和水的流速。

师生活动:分两小组讨论.一组用一元一次方程解决,另一组尝试列方程组(不要求求解),为解二元一次方程组埋下伏笔。然后每组各派一名代表上黑板完成。

设计意图:提醒并指导学生要先分析问题的两个未知数关系,尝试结合题意,寻找到两个等量关系,列方程组。体会直接设两个未知数,列方程,方程组更加直观,4归纳总结

师生活动:共同回顾本节课的学习过程,并回答以下问题

1.二元一次方程,二元一次方程组的概念

2.二元一次方程,二元一次方程组的解的概念.

3.在探究的过程中用到了哪些思想方法?

4.你还有哪些收获?

设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

5.布置作业

教科书第90页第3,4题

六、目标检测设计

1.填表,使上下每对x,y的值是方程3x+y=5的解

x

y

-0.6

设计意图:考查学生二元一次方程的解的掌握情况.

2.选择题

二元一次方程组的解为()

A.

B.

c.D.

设计意图:考查学生二元一次方程组的解的掌握情况.

第三篇:二元一次方程组的解法复习教案

《二元一次方程组的解法复习》教案设计

湖州四中

金志彬

一、教材分析

本课是对七年级下册的第二章第三节《解二元一次方程组》加强巩固,熟练的解二元一次方程组在整个教材中起到了承上启下的作用,二元一次方程组的解法中不仅体现了“转化思想”和“整体思想”,而且也是解决后续——二元一次方程组的应用和三元一次方程组及其解法等学习的基础,为数学交流提供了有效的途径。

二、学情分析

学生已经学习了二元一次方程组的解法,包括代入消元法、加减消元法,对于书写的步骤也有一定的规范。但是对于不同类型的二元一次方程组不能用恰当的方法解决,对于复杂一点的二元一次方程组和有点技巧性的二元一次方程组解决方法还不熟练,所以在学习的过程中,教师要对他们进行学法指导,尤其要对他们进行数学学习方法和数学思想的培养。

三、教学目标 【知识与能力】

1.熟练的运用代入法和消元法解二元一次方程组; 2.会用整体思想解决二元一次方程组;

3.能根据具体的二元一次方程组来选择恰当的方法来解二元一次方程组。【过程与方法】 4.通过对二元一次方程组的解法复习巩固,体验数学学习中的转化思想;

5.在对方程的整体代入和计算中,渗透整体思想。【情感态度与价值观】

6.体会转化和整体的数学思想,在探求新知过程中体会小组合作的学习方式。

四、教学重难点

【教学重点】:熟练的运用代入法和加减法解二元一次方程组。【教学难点】:会用整体思想解二元一次方程组。

五、教学过程

(一)创设情境

3xy6 x3y10

师:这是什么? 生:二元一次方程组.师:那么接下来我们可以做些什么呢? 生:解二元一次方程组.师:那么解二元一次方程组的基本思想是什么呢? 生:消元(教师板书基本思想—消元)师:通过消元,我们可以得到什么? 生:把二元一次方程组转化成一元一次方程.师:这体现了什么数学思想? 生:转化思想(教师板书)师:请大家思考这个方程该怎么解?

请学生回答,引出二元一次方程组的解法有①代入法②消元法(教师板书)

师:听起来大家掌握的都不错,实践是检验真理的唯一标准,接下来练一练.【你会用恰当的方法解下列二元一次方程组吗?】

2x3y7(1) 3x2y

4xy126(2)x3y11010一、二大组做第1道,三、四大组做第2道.①请学生板演 ②板演完毕针对性点评

师:什么时候用代入法方便?解二元一次方程组时第一步要做什么? 学生回答教师引导总结如下: 【解二元一次方程组不要急】

先观察根据方程组的数和式的特点,然后选择恰当的方法.代入法:当未知数前面的系数为1或-1的.加减法:用代入法不方便的.用恰当的方法解题会有事半功倍的效果.(二)灵活运用

3xy6x3y101、已知二元一次方程组

求①x+y=________②x-y=__________

③2(x+3y)-(3x+y)=____________(引出整体思想并板书)

2.若方程组

3xy6x3y10的解是x13(ab)(ab)6,则方程组的解是_________.y3(ab)3(ab)10x22(y1)3.解方程组.2(x2)(y1)53xya54.方程组.2xy4a(1)其中x、y的值相等,求a的值.(2)①x=________(用a表示x)

②y=________(用a表示y)

③其中x是y的两倍,求a的值.(三)拓展提高

xy3.1、已知yz4,则xyz________xz5x4y0x2、已知(y0),求的值.zy2z0

(四)、课堂小结

通过本节课你有哪些收获?(请学生自由回答)

六、教学反思

本节课的目的是让学生熟练的用代入法和消元法解二元一次方程组并能用整体思想解决相关的二元一次方程组,整堂课完成了教学目标与教学重难点,课堂纪律也较好,个别学生上课积极举手发言。

当然不足之处也有许多,学生在录播教室很拘谨,气氛比较沉闷,我没能及时调动学生的积极性.此外,二元一次方程组的解法复习中应多总结解题规律以及在解方程组时易出现的错误。结束时的课堂的提问让学生谈收获的时候问的太宽泛了,导致学生不知如何回答.在以后的教学和学习中我会及时改正以上不足,多去请教老教师.

第四篇:二元一次方程组及解法复习课教案

教学目标

知识与技能

掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

过程与方法

能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组

情感、态度与价值观

培养学生分析问题,解决问题的能力,体验学习数学的快乐。

重点:

掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

难点:

选择合适的方法解方程组;并能把相应问题转化为解方程组。

教学手段

多媒体,小组评比。

教学过程

一、知识梳理

以小组为单位讨论二元一次方程组已经学了哪些知识?

1、什么是二元一次方程?什么是二元一次方程的解?

2、什么是二元一次方程组?什么是二元一次方程组的解?

3、解二元一次方程组的基本思想是什么?消元的方法有哪些?

设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础

二、基础训练

教学手段与方法:每小组必答题,答对为小组的一分,调动学习的积极性。

设计意图:

基础知识达标训练。

教学手段与方法:

毎小组选代表讲解为小组加分,充分调动学生的积极性。学生讲解不到位的老师补充。

设计意图:对二元一次方程组解法的灵活应用。

第五篇:七年级数学下册 2.2二元一次方程组的解法(第2课时)教案 湘教版

2.2.2加减消元法(1)

教学目标

1. 进一步理解解方程组的消元思想。知道消元的另一途径是加减法。2. 会用加沽法解能直接相加(减)消去未知当数的特殊方程组。3. 培养创新意识,让学生感受到“简单美”。教学重点

根据方程组特点用加减消元法解方程组。教学难点

加减消元法的引入。教学过程

一、探究引入。如何解方程组?

12x5y9 

2x3y1721. 用代入法解(消x),指名板演,解完后思考:

2. 在由(1)或(2)算用y的代数或表示x时要除以x系数2。代入另一方程时又要乘以系数2。是否可以简单一些?用“整体代换”思想把2x作一个未知当选消元求解。

3. 还有没有更简单的解法。

引导学生用(1)—(2)消去x求解。

提问:(1)两方程相减根据是什么?(等式性质)

(2)目的是什么?(消去x).比较解决此问题的3种方法,观察方法3与方法1、2的差别引入本课。

新课

1. 讨论下列各方程组怎样消元最简便。(1)0.5xy46x3y9(2)

0.5x3y87x3y103mn603x4y10(3)(4)

4mn403x2y42. 例1.解方程组

用心

爱心

专心

7x3y12x3y8

提问:怎样消元? 学生解此方程组。3. 例2.解方程组

2x3y93y11

3x 讨论:怎样消元解此方程组最简便。学生解此方程组。检验。

讨论:以上例题中,被消去的未知数的系数有什么特点?练习。

1. P32练习题(1)、(2)、(4)。2. 解方程组 mn5mn1

3

3. 已知2x3y55x3y220。

求x、y的值。

小结。

通过本课学习,你有何收获? 作业。

P33习题2-2A组第2题(1)、(2)。B组第2题。后记:

用心

爱心

专心

下载数学:7.2《二元一次方程组的解法》(第5课时)教案(华东师大版七年级下)word格式文档
下载数学:7.2《二元一次方程组的解法》(第5课时)教案(华东师大版七年级下).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐