第一篇:高二数学圆的一般方程教案 人教版
高二数学圆的一般方程教案 人教版
一、教学目标
(一)知识教学点
使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.
(二)能力训练点
使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力.
(三)学科渗透点
通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.
二、教材分析
1.重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.
(解决办法:(1)要求学生不要死记配方结果,而要熟练掌握通过配方求圆心和半径的方法;(2)加强这方面题型训练.)
2.难点:圆的一般方程的特点.
(解决办法:引导学生分析得出圆的一般方程的特点,并加以记忆.)
3.疑点:圆的一般方程中要加限制条件D2+E2-4F>0.
(解决办法:通过对方程配方分三种讨论易得限制条件.)
三、活动设计 讲授、提问、归纳、演板、小结、再讲授、再演板.
四、教学过程
(一)复习引入新课
前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.
(二)圆的一般方程的定义
1.分析方程x3+y2+Dx+Ey+F=0表示的轨迹
将方程x2+y2+Dx+Ey+F=0左边配方得:(1)
(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程
第二篇:人教版圆的一般方程教案
圆的一般方程
一、教学目标
1.讨论并掌握圆的一般方程的特点,并能将圆的一般方程化为圆的标准方程,从而求出圆心的坐标和半径.
2.能分析题目的条件选择圆的一般方程或标准方程解题,解题过程中能分析和运用圆的几何性质.
二、教学重点与难点
圆的一般方程的探求过程及其特点是教学重点;根据具体条件选用圆的方程为教学难点.
三、教学过程
(一)复习并引入新课
师:请大家说出圆心在点(a,b),且半径是r的圆的方程. 生:(x-a)2+(y-b)2=r2.
师:以前学习过直线,直线方程有哪几种?
生:直线方程有点斜式、斜截式、两点式、截距式和一般式. 师:直线方程的一般式是Ax+By+C=0吗? 生A:是的.
生B:缺少条件A2+B2≠0.
师:好!那么圆的方程有没有类似“直线方程的一般式”那样的“一般方程”呢?
(书写课题:“圆的一般方程”的探求)1
(二)探索新知
师:圆是否有一般方程?这是个未解决的问题,我们来探求一下.大家知道,我们认识一般的东西,总是从特殊入手.如探求直线方程的一般形式就是通过把特殊的公式(点斜式,两点式……)展开整理而得到的.想求圆的一般方程,怎么办? 生:可仿照直线方程试一试!把标准形式展开,整理得
x2+y2-2ax-2by+a2+b2-r2=0.令D=-2a,E=-2b,F=a2+b2-r2,有:x2+y2+Dx+Ey+F=0(*)师:从(*)式的得来过程可知,只要是圆的方程就可以写成(*)的形式.那么能否下结论:x2+y2+Dx+Ey+F=0就是圆的方程? 生A:不一定.还得考虑:x2+y2+Dx+Ey+F=0能否写成标准形式.
生B:也可以像直线方程一样,要有一定条件. 师:那么考虑考虑怎样去寻找条件? 生:配方.
师;请大家动手做,看看能否配成标准形式?
(放手让同学讨论,教师适当指导,然后由同学说,教师板书.)
22将(*)式配方得:DED2E24Fx2y24.
1.当D2+E2-4F>0时,比较(△)式和圆的标准方程知:(*)式表示以
DE12,2为圆心,2D2E24F为半径的圆;
2.当D2E24F0时,式只有实数解xD2,yE2,即式表示一个点D2,E2有时也叫点圆3.当D2+E2-4F<0时,(*)式没有实数解,因而它不表示任何图形.
教师总结:当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0叫圆的一般方程.
师:圆的一般方程有什么特点? 生A:是关于x、y的二元二次方程. 师:刚才生A的说法对吗?
生B:不全对.它是关于x、y的特殊的二元二次方程. 师:特殊在什么地方?
(通过争论与举反例后,由教师总结)师:1.x2,y2系数相同,且不等于零. 2.没有xy这样的二次项.
(追问):这两个条件是“方程Ax2+By2+Dx+Ey+F=0表示圆”的什么条件? 生:必要条件. 师:还缺什么? 生:D2+E2-4F>0.
练习:判断以下方程是否是圆的方程: ①x2+y2-2x+4y-4=0 3
②2x2+2y2-12x+4y=0 ③x2+2y2-6x+4y-1=0 ④x2+y2-12x+6y+50=0
三、应用举例
师:先请大家比较一下圆的标准方程(x-a)2+(y-b)2=r2与一般方程x2+y2+Dx+Ey+F=0在应用上各有什么优点?
生:标准方程的几何特征明显——能看出圆心、半径;一般方程的优点是能从一般的二元二次方程中找出圆的方程. 师:怎样判断用“一般方程”表示的圆的圆心、半径.
DE1生:圆心,rD2E24F.,222生B:不用死记,配方即可.
师:两种形式的方程各有特点,我们应对具体情况作具体分析、选择. 四.例题讲解
例1.求过三点O(0,0),M1(1,1),M2(4,2)的圆的方程;
分析:由于O(0,0),M1(1,1),M2(4,2)不在同一条直线上,因此经过O,M1,M2三点有唯一的圆.
解:法一:设圆的方程为x2y2DxEyF0,∵O,M1,M2三点都在圆上,∴O,M1,M2三点坐标都满足所设方程,把O(0,0),M1(1,1),M2(4,2)代入所设方程,4
F0得:DEF20
4D2EF200D8解之得:E6
F0所以,所求圆的方程为x2y28x6y0.
法二:也可以求OM1和OM2中垂线的交点即为圆心,圆心到O的距离就是半径也可以求的圆的方程:x2y28x6y0.
法三:也可以设圆的标准方程:(xa)2(yb)2r2将点的坐标代入后解方程组也可以解得(x4)2(y3)225
五、小结
注意一般式的特点:1°x2,y2系数相等且不为零;2°没有xy这样的项;3°D2+E2-4F>0.另外,大家考虑:D2+E2-4F有点像什么?像判别式,它正是方程x2+y2+Dx+Ey+F=0是否是圆的方程的判别式.如D、E确定了,则与F的变化有关.
六、作业:
1.求下列各圆的圆心坐标和半径: ①x2+y2-2x-5=0 ②x2+y2+2x-4y-4=0 ③x2+y2+2ax=0 ④x2+y2-2by-2b2=0
七、教学反思
这是一节介绍新知识的课,而且这节课还非常有利于展现知识的形成过程.因此,在设计这节课时,力求“过程、结论并重;知识、能力、思想方法并重”.6
第三篇:高二数学圆教案
竞赛讲座09
-圆
基础知识
如果没有圆,平面几何将黯然失色.
圆是一种特殊的几何图形,应当掌握圆的基本性质,垂线定理,直线与圆的位置关系,和圆有关的角,切线长定理,圆幂定理,圆和圆的位置关系,多边形与圆的位置关系.
圆的几何问题不是独立的,它与直线形结合起来,将构成许多丰富多彩的、漂亮的几何问题,“三角形的心”,“几何著名的几何定理”,“共圆、共线、共点”,“直线形” 将构成圆的综合问题的基础.
本部分着重研究下面几个问题: 1.角的相等及其和、差、倍、分; 2.线段的相等及其和、差、倍、分; 3.二直线的平行、垂直; 4.线段的比例式或等积式; 5.直线与圆相切;
6.竞赛数学中几何命题的等价性.
命题分析
例1.已知A为平面上两个半径不等的⊙O1和⊙O2的一个交点,两圆的外公切线分别为P1P2,Q1Q2,M1、M2分别为P1Q1、P2Q2的中点,求证:O1AO2M1AM2.
例2.证明:唯一存在三边长为连续整数且有一个角为另一个角的两倍的三角形. 例3.延长AB至D,以AD为直径作半圆,圆心为H,G是半圆上一点,ABG为锐角.E在线段BH上,Z在半圆上,EZ∥BG,且EHEDEZ,BT∥HZ.求证:
21TBGABG.
3例4.求证:若一个圆外切四边形有两条对边相等,则圆心到另外两边的距离相等. 例5.设A是△ABC中最小的内角,点B和C将这个三角形的外接圆分成两段弧,U是落在不含A的那段弧上且不等于B与C的一个点,线段AB和AC的垂直平分线分别交线段AU于V和W,直线BV和CW相交于T.证明:AUTBTC.
例6.菱形ABCD的内切圆O与各边分别切于E,F,G,H,在EF与GH上分别作⊙O切线交AB于M,交BC于N,交CD于P,交DA于Q,求证:MQ∥NP.
例7.⊙O1和⊙O2与△ABC的三边所在直线都相切,E,F,G,H为切点,并且EG,FH的延长线交于点P.求证:直线PA与BC垂直.
例8.在圆中,两条弦AB,CD相交于E点,M为弦AB上严格在E、B之间的点.过
⌒⌒D,E,M的圆在E点的切线分别交直线BC、AC于F,G.已知
AMCEt,求(用t表ABEF示).
例9.设点D和E是△ABC的边BC上的两点,使得BADCAE.又设M和N分
1111. MBMDNCNE例10.设△ABC满足A90,BC,过A作△ABC外接圆W的切线,交直线BC于D,设A关于直线BC的对称点为E,由A到BE所作垂线的垂足为X,AX的中点为Y,BY交W于Z点,证明直线BD为△ADZ外接圆的切线. 别是△ABD、△ACE的内切圆与BC的切点.求证:例11.两个圆1和2被包含在圆内,且分别现圆相切于两个不同的点M和N.1经过2的圆心.经过1和2的两个交点的直线与相交于点A和B,直线MA和直线MB分别与1相交于点C和D.求证:CD与2相切.
例12.已知两个半径不相等的⊙O1和⊙O2相交于M、N两点,且⊙O1、⊙O2分别与⊙O内切于S、T两点.求证:OMMN的充要条件是S、N、T三点共线.
例13.在凸四边形ABCD中,AB与CD不平行,⊙O1过A、B且与边CD相切于点P,⊙O2过C、D且与边AB相切于点Q.⊙O1和⊙O2相交于E、F,求证:EF平分线段PQ的充要条件是BC∥AD.
例14.设凸四边形ABCD的两条对角线AC与BD互相垂直,且两对边AB与CD不平行.点P为线段AB与CD的垂直平分线的交点,且在四边形的内部.求证:A、B、C、D四点共圆的充要条件为SPABSPCD.
训练题
1.△ABC内接于⊙O,BAC90,过B、C两点⊙O的切线交于P,M为BC的中点,求证:(1)AMcosBAC;(2)BAMPAC. AP⌒⌒⌒CA,AB的中点,BC2.已知A,B,C分别是△ABC外接圆上不包含A,B,C的弧BC,分别和CA、AB相交于M、N两点,CA分别和AB、BC相交于P、Q两点,AB分别和BC、CA相交于R、S两点.求证:MNPQRS的充要条件是△ABC为等边三角形.
CA分别 交于点D和E,3.以△ABC的边BC为直径作半圆,与AB、过D、E作BC的垂线,垂足分别为F、G.线段DG、EF交于点M.求证:AMBC.
C内的旁切圆与AB相切于E,4.在△ABC中,已知B内的旁切圆与CA相切于D,过DE和BC的中点M和N作一直线,求证:直线MN平分△ABC的周长,且与A的平分线平行.
5.在△ABC中,已知,过该三角形的内心I作直线平行于AC交AB于F.在BC边上取点P使得3BPBC.求证:BFP1B. 26.半圆圆心为O,直径为AB,一直线交半圆于C,D,交AB于M(MBMA,MCMD).设K是△AOC与△DOB的外接圆除点O外之另一交点.求证:MKO为直角 .
7.已知,AD是锐角△ABC的角平分线,BAC,ADC,且cosco2s.求证:AD2BDDC.
8.M为△ABC的边AB上任一点,r1,r2,r分别为△AMC、△BMC、△ABC的内切圆半径;1,2,分别为这三个三角形的旁切圆半径(在ACB内部).
求证:r112r2r.
9.设D是△ABC的边BC上的一个内点,AD交△ABC外接圆于X,P、Q是X分别到AB和AC的垂足,O是直径为XD的圆.证明:PQ与⊙O相切当且仅当ABAC.
10.若AB是圆的弦,M是AB的中点,过M任意作弦CD和EF,连CD,DE分别交AB于X,Y,则MXMY.
11.设H为△ABC的垂心,P为该三角形外接圆上的一点,E是高BH的垂足,并设PAQB与PARC都是平行四边形,AQ与BR交于X.证明:EX∥AP.
12.在△ABC中,C的平分线分别交AB及三角形的外接圆于D和K,I是内切圆圆心.证明:(1)111CIID1. ;(2)IDIKCIIDIK
第四篇:数学教案(圆的一般方程)
教学简案
【课
题】圆的一般方程 【教学目标】
1、知识目标:(1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心和半径,掌握方程x2y2DxEyF0表示圆的条件;
(2)能通过配方等手段,把圆的一般方程化为圆的标准方程,能用待定系数法求圆的方程。
(3)利用圆的方程解决与圆有关的实际问题。
2、能力目标:通过对方程x2y2DxEyF0表示圆的条件的探索,培养学生探索、发现及分析解决问题的实际能力。
3、情感目标:渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
【教学重点】圆的一般方程的代数特征,一般方程与标准方程间互化,根据已知条件确定方程中的系数D、E、F。
【教学难点】对圆的一般方程的认识、掌握和应用。【教学方法】讲授法,分析法。【教学用具】多媒体辅助教学 【教学流程】
一、情景创设 问题1:
在平面直角坐标系中,以C(a,b)为圆心,r为半径的圆的方程是什么?
问题2:
将圆的标准方程展开整理后,能发现哪些特征?(寻找新知识的生长点)
结论:(多媒体显示)
将(xa)2(yb)2r2 展开得x2y22ax2bya2b2r20,我们发现任何圆都能表示为一个具有以下特征的x,y的二次方程:
(1)x2和y2项的系数同为1;
(2)不出现交叉乘积的二次项xy。
问题3:
x2y22x4y60是圆的方程?若是,写出圆心坐标和半径;若不是,则说明理由
二、探索研究
二元二次方程x2y2DxEyF0表示圆的条件是什么?
(创设一种鼓励的宽松的氛围,让学生充分发表自已的观点,教师适当引导。)
二元二次方程x2y2DxEyF0,通过配方后可以化为
D2E2D2E24F(x)(y)
224(1)当D2E24F0时,方程表示以(为半径的圆;
DE1,)为圆心,D2E24F222(2)当D2E24F0时,方程表示一个点(DE,); 22(3)当D2E24F0时,方程没有实数解,因而方程不表示任何图形。板书:圆的一般方程:x2y2DxEyF0(D2E24F0)
指出:(1)圆心(DE1,),半径D2E24F; 222(2)圆的标准方程的优点在于它明确指出了圆心和半径,而一般方程突出了方程形式上的特点;
(3)给出圆的一般方程,会写出它的圆心和半径;若给出相关条件,则能求出圆的方程。
三、应用举例
例
1、判断下列方程是否表示圆,如果是,并求出各圆的半径和圆心坐标:
(1)x2y26x0;
(2)2x22y24x8y120;
(3)2x22y24x8y100;(4)x2y26x100;
(5)x22y24x8y10。
(解略)
例
2、求以O(0,0),A(1,1),B(4,2)为顶点的三角形的外接圆方程,并求出它的圆心和半径。
(分析:应用圆的一般方程x2y2DxEyF0,将已知三点的坐标代
入这个方程,得到一个三元一次方程组,解这个三元一次方程组,即可求得
圆的一般方程,对圆的一般方程配方即可求半径长和圆心坐标。同时,将这
种求圆的一般方程的方法称为“待定系数法”。)
四、课内练习
1、判定下列方程中,哪些是圆的方程?如果是,求出它们的圆心和半径:
(1)2x22y24x50;
(2)x2y23x4y120;
3(3)x22y24x2y50;
(4)x22y24x2y1;
(5)3x24xy(x2y)24
2、求过三点A(2,2),B(5,3),C(3,-1)的圆的方程。
五、课内拓展
若圆x2y2DxEyF0与y轴相切于原点,则D,E,F应满足什么条件?若圆与y轴相切呢?
学生讨论,各抒已见,相互补充,完善结论。
我们还可以继续探究:如当圆与x轴相切;过原点;原点在圆内;等等情况时,系数D、E、F应满足的条件。
八、归纳小结
(教师引导,由学生总结一节课的收获,然后显示幻灯片同时教师总结。)
五、布置作业
(1)课堂作业:《数学指导用书》第25页课外习题1(1)(2)(3)(4)、2、4。(2)课外作业:《数学指导用书》第26页课外习题5、6、7。
第五篇:圆的一般方程教学设计
一、学习目标
知识与技能:在熟练记忆圆的标准方程的基础上,能通过配方法将方程
配方,从而得出此方程表示圆的条件,记住此条件,并会求圆心和半径;熟练进行标准方程和一般方程之间的互化;通过比较得出求圆方程的两种方法(待定系数法和几何性质法)。
过程与方法:通过对方程
表示圆的条件的探究,培
圆的一般方程教学设计
养学生探索发现和解决问题的能力,通过比较例题,感悟归纳和总结的学习方法。
情感态度与价值观:通过对数学思想和方法的渗透,让学生感受解决问题的不同思考角度和过程,激励学生积极思考,勇于探索的精神。
二、重点难点:探究方程的两种方法(待定系数法和几何性质法)。
三、学法提示:探究式;比较归纳式
四、学习过程:包括相关预习、学习探究、反馈和展示、启发点拨、归纳小结、释疑答难、训练巩固、点拨校正、作业等。
1、自主预习(用10分钟时间阅读教材内容,勾勒自己的疑惑,查阅相关的资料辅助解决疑惑,记录自己一些独特的见解,完成学业质量模块测评的环节1,包括基础知识的记忆、思维提升的判断及A、B、C不同层级的练习)
2、思考探究(引入):
问题1:圆的标准方程是什么?你能正确展开吗?
此时重点观察和发现后进生的练习过程,及时地予以真诚的语言鼓励或者一个肯定的眼神、一个手势,让这些学生从一开始投入到我能学会的自信心当中来。
问题2:方程方程
表示圆的条件;求圆方程在解决这两个问题之前老师紧接着问:由问题1你能想到解决这两个问题的办法吗?或者由这两个方程的形式特点你想到了什么方法来处理这两个方程?这样培养学生善于发现问题之间的内在联系的意识,也培养学生观察分析问题的能力。
这样学生自然采用配方法处理,第一个表示一个圆,第二个不表示任何图形。
问题3:将问题2一般化,方程
都表示圆吗?在什么条件下表示圆?
3、小组展示
先给学生5分钟自主探究(因为涉及到分情况讨论,可能有一半学生会出错),而后各个小组在小组长的展示下相互完善,达成共识。
4、点拨,渗透分类讨论思想的时机和标准。
5、自主解答,训练感悟。
求过三点O(0,0),M(1,1),N(4,2)的圆的方程,并求这个圆的圆心和半径。要求:8分钟之内完成;根据已有知识多联系解决,方法不限。
8分钟之后提问一名完成的学生来展示方法和过程,之后再调动学生的积极性来充分展示自己的过程。
6、归纳总结
圆的一般方程是什么?条件是什么? 求圆的方程的方法有哪些?对照例
2、例
3、例4回答
对于待定系数法的应用,你还想到了哪些知识?请总结用待定系数法解题的步骤。
7、学生提问,答疑解惑
8、巩固练习。(1)判断方程(2)已知圆C的圆心在直线圆C的标准方程。
五、作业布置 :1.正式作业课本P124:1,2; 2.笔记整理
=0表示什么图形(配方法,分类讨论思想)
并且经过原点和A(2,1),求