二次函数配方法练习(推荐阅读)

时间:2019-05-13 02:04:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《二次函数配方法练习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《二次函数配方法练习》。

第一篇:二次函数配方法练习

1.抛物线y=2x2-3x-5配方后的解析式为顶

点坐标为______.当x=______时,y有最______值是______,与x轴的交点是______,与y轴的交点是______,当x______时,y随x增大而减小,当x______时,y随x增大而增大.

2.抛物线y=3-2x-x2的顶点坐标是______,配方后为

它与x轴的交点坐标是______,与y轴的交点坐标是______.

3.把二次函数y=x2-4x+5配方成y=a(x-h)2+k的形式,得______,这个函数的图象有最______点,这个点的坐标为______.

4.已知二次函数y=x2+4x-3,配方后为当x=______时,函数y有最值______,当x______时,函数y随x的增大而增大,当x=______时,y=0.

5.抛物线y=ax2+bx+c与y=3-2x2的形状完全相同,只是位置不同,则a=______.

6.抛物线y=2x2如何变化得到抛物线y=2(x-3)2+4.请用两种方法变换。

7.抛物线y=-3x2-4的开口方向和顶点坐标分别是()

A.向下,(0,4)

C.向上,(0,4)

2B.向下,(0,-4)D.向上,(0,-4)8.抛物线yx2x的顶点坐标是()

A.(1,1)B.(1,1)22C.(,1)1

2D.(1,0)

第二篇:二次函数练习

二次函数练习

1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________

2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------3,二次函数yx2(a2)x5在区间2,上是增函数,则a的取值范围是_______________

4,已知函数f(x)mx2(m3)x1的图像与X轴的交点至少一个在原点的右侧,求实数m的范围。

5,已知不等式ax2

xc0的解集为xx1,x5则a=______c=___________

6,已知二次函数fx同时满足条件:(1)f1xf1x;(2)fx的最大值为15;方程fx=0的两根的平方和为4,求fx的解析式。

7,已知不等式x22x30的解集为A,不等式x2x60的解集为B,不等式x2axb0的解集为AB, 求a,b的值。

8,已知不等式ax25xb0的解集为x3x2,求不等式bx25xa0的解集

9,解不等式:

2x2ax20x2(a1

a)x10

10.(2009安徽卷)(本小题满分12分)已知函数f(x)x

x

a(2lnx),(a0),讨论f(x)的单调性.

第三篇:二次函数练习

练习

【动动手、动动脑,让我们课堂更精彩!】

1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2.

(1)填空:A点坐标为(,);B点坐标为(,);D点坐标为(,)、对称轴为 ;直线AC的函数表达式为.(2)P是线段AC上的一个动点,其横坐标为m,过P点作y轴的平行线交抛物线于E点.①线段PE长为(用含m的代数式表示);

②是否存在实数m,使△ACE的面积最大?若存在,求出m的值;若不存在,请说明理由.(3)若动点P在直线AC上运动,以PE为直径的圆与y轴相切时,求点P的坐标.y

y

l l xAOxB AOBP

P

D CDCE E

备用图

【问1】:在抛物线对称轴上是否存在一点Q,使QA+QD最小?若存在,求出Q点的坐标;若不存在,请说明理由.【拓展问1】:抛物线的对称轴上是否存在一点M,使|MA-MD|最大?若存在,求出M点的坐标;若不存在,请说明理由.【问2】:点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由. ..【问3】:在本题的背景下,你还能提出什么问题来解答?

第四篇:二次函数练习

26.1二次函数(第二课时)练习

班级:_______

姓名:_______

一、请准确填空

1、假设函数y=(k2-4)x2+(k+2)x+3是二次函数,那么k______.2、函数y=,当k=______时,它的图象是开口向下的抛物线;此时当x______时,y随x的增大而减小.3、二次函数y=-x2,当x1

__(填序号).①m

②m>0,n<0

③m<0,n>0

④m>n>05、写出一个开口向上,顶点是坐标原点的二次函数的表达式:__

_.6、假设抛物线y=ax2经过点A(,-9),那么其表达式为_______________。

7、函数y=2x2的图象对称轴是______,顶点坐标是______.8、直线y=x+2与抛物线y=x2的交点坐标是______.二、相信你的选择

9、以下函数中,具有过原点,且当x>0时,y随x增大而减小,这两个特征的有〔

①y=-ax2(a>0)

②y=(a-1)x2(a<1)

③y=-2x+a2(a≠0)

④y=x-a

A.1个

B.2个

C.3个

D.4个

10、以下说法错误的选项是〔

A.二次函数y=3x2中,当x>0时,y随x的增大而增大

B.二次函数y=-6x2中,当x=0时,y有最大值0

C.a越大图象开口越小,a越小图象开口越大

D.不管a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点

11、在同一坐标系中,作y=x2,y=-x2,y=x2的图象,它们的共同特点是〔

A.抛物线的开口方向向上

B.都是关于x轴对称的抛物线,且y随x的增大而增大

C.都是关于y轴对称的抛物线,且y随x的增大而减小

D.都是关于y轴对称的抛物线,有公共的顶点

12、假设对任意实数x,二次函数y=(a+1)x2的值总是非负数,那么a的取值范围是〔

A.a≥-1

B.a≤-1

C.a>-1

D.a<-113、如图1,函数y=-a(x+a)与y=-ax2(a≠0)在同一坐标系上的图象是〔

图114、直线y=x与抛物线y=-2x2的交点是〔

A.(,0)

B.(-,-)

C.(-,-),(0,0)

D.(0,0)

15、a<-1,点(a-1,y1),(a,y2)(a+1,y3)都在函数y=x2的图象上,那么〔

A.y1

B.y1

C.y3

D.y2

A.顶点坐标

B.开口方向

C.开口大小

D.对称轴

17、函数y=ax2(a≠0)的图象经过点(a,8),那么a的值为〔

A.±2

B.-2

C.2

D.3

三、解答题

18、二次函数y=ax2与直线y=2x-1的图象交于点P(1,m).(1)求a、m的值;

(2)写出二次函数的表达式,并指出x取何值时,该表达式的y随x的增大而增大.19、影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究说明,晴天在某段公路上行驶时,速度v(km/h)的汽车的刹车距离s(m)可以由公式s=v2确定;雨天行驶时,这一公式为s=v2.(1)如果行车速度是70

km/h,那么在雨天行驶和在晴天行驶相比,刹车距离相差多少米?

(2)如果行车速度分别是60

km/h与80

km/h,那么同在雨天行驶(相同的路面)相比,刹车距离相差多少?

(3)根据上述两点分析,你想对司机师傅说些什么?

20、直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).(1)求直线和抛物线所表示的函数表达式;

(2)在抛物线上是否存在一点D,使得S△OAD=S△OBC,假设不存在,说明理由;假设存在,请求出点D的坐标,与同伴交流.21、一次函数y=ax+b的图象上有两点A、B,它们的横坐标分别是3,-1,假设二次函数y=x2的图象经过A、B两点.(1)请求出一次函数的表达式;

(2)设二次函数的顶点为C,求△ABC的面积.

第五篇:二次函数练习1-8

二次函数练习八

1、当x=1时,二次函数y=3x2-x+c的值是4,则C=_________

2、二次函数y=x2+c经过点(2,0),则当x=-2时,y=____________

3、抛物线y=(k-1)x2+(2-2k)x+1,那么此抛物线的对称轴是直线____________,它必定经过_____________和_____________

4、一个正方形的面积为16cm2,当把边长增加x cm时,正方形面积为y cm2,则y关于x的函数为____________。

5、如果抛物线y=1

2x2-mx+5m2与x轴有交点,则m___________

B、2 C、3 D、4

6、下列变量之间是二次函数关系的有()个.A、17、函数y=2x2-x+3经过的象限是()

A、一、二、三象限B、一、二象限C、三、四象限D、一、二、四象限

8、函数y=-x2+4x+1图象顶点坐标是()

A、(2,3)B、(-2,3)C、(2,1)D、(2,5)

9、已知二次函数y=(k2-1)x2+2kx-4与x轴的一个交点A(-2,0),则k值为()

A、2 B、-1 C、2或-1 D、任何实数)

10、已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过(A、一二三象限 B、一二四象限 C、一三四象限 D、一三四象限

11、已知y=ax2+bx+c中a<0,b>0,c<0,△ <0,画出函数的大致图象。

12、已知y=x2+(m2+4)x-2m2-12,求证,不论m取何实数图象总与x轴有两个交点。

13、甲乙两船航行于海上,甲船的位置在乙船北方125km,以15km/h的速度向东行驶,乙船以20km/h的速度向北行驶,则多久两船相距最近?最近距离多少?

14、已知二次函数y=x2-(m2+8)x+2(m2+6),设抛物线顶点为A,与x轴交于B、C两点,问是否存在实数m,使△ABC为等腰直角三角形,如果存在求m;若不存在说明理由。

下载二次函数配方法练习(推荐阅读)word格式文档
下载二次函数配方法练习(推荐阅读).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    配方法讲解练习

    过程 1.转化: 将此一元二次方程化为a^2;+bx+c=0的形式(即一元二次方程的一般形式) 2.移项: 常数项移到等式右边 3.系数化1: 二次项系数化为1 4.配方: 等号左右两边同时加上一次项......

    二次函数一般式用配方法化成顶点式教学案例[全文5篇]

    二次函数一般式用配方法化成顶点式教学案例二次函数一般式用“配方法”化成顶点式教学案例二次函数的图象是研究二次函数的重要工具把握好二次函数图象的特点对称轴、开口方......

    二次函数

    2.二次函数定义__________________________________________________二次函数(1)导学案 一.教学目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围......

    二次函数

    ?二次函数?测试一.选择题〔36分〕1、以下各式中,y是的二次函数的是()A.B.C.D.2.在同一坐标系中,作+2、-1、的图象,那么它们()A.都是关于轴对称B.顶点都在原点C.都是抛物线开口向上D.以上......

    初三数学配方法练习

    初三数学配方法综合练习 1、求证:无论m取什么实数时,总有m2 +4m+5是正数。2、小李家今天来了一位客人,小李问这位叔叔:“是你的年龄大,还是我爸爸的年龄大?” 这位叔叔说:“你爸爸......

    2.用配方法将二次函数的表达式化成顶点式

    2.用配方法将二次函数的表达式化成顶点式(20070911***7)第1题. (2007山东泰安课改,3分)将y(2x1)(x2)1化成ya(xm)n的形式为 325A.y2x416 317C.y2x22 317B.y2x 48317D.y2x 22......

    二次函数解析式专项练习(精选5篇)

    二次函数解析式专项练习一般式:y=ax2+bx+c(a≠0) 顶点式:y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点坐标 两根式:y=a(x-x1)(x-x2)(a≠0),其中x1、x2是抛物线与x轴的两个交点的横......

    二次函数综合题

    二次函数综合题 如图所示,在直角坐标系中,A(-1,0),B(3,0),C(0,3) 1.用三种方法求出经过A B C三点的抛物线解析式2.抛物线的顶点坐标为D( ) 3.求△ABC的面积,求四边形ACDB的面......