第一篇:二次函数解析式专项练习
二次函数解析式专项练习
一般式:y=ax2+bx+c(a≠0)
顶点式:y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点坐标
两根式:y=a(x-x1)(x-x2)(a≠0),其中x1、x2是抛物线与x轴的两个交点的横坐标.一、已知抛物线上任意三点时,通常设解析式为一般式yax2bxc,然后解三元方程组求解;
例.已知二次函数图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。
二、已知抛物线顶点坐标时和抛物线上另一点时,通常设解析式为顶点式yaxhk求解。2例.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。
三、已知抛物线与x轴的交点的横坐标时,通常设解析式为交点式ya(xx1)(xx2)。
例.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。
综合练习:
1.已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式. 2.已知抛物线顶点坐标为(1,-4),且又过点(2,-3).求抛物线的解析式.
3.已知抛物线与x轴的两交点为(-1,0)和(3,0),且过点(2,-3).求抛物线的解析式.
4.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.
5.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.
6.已知二次函数y=ax2+bx+c的图像与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),求二次函数的顶点坐标.
第二篇:二次函数练习
26.1二次函数(第二课时)练习
班级:_______
姓名:_______
一、请准确填空
1、假设函数y=(k2-4)x2+(k+2)x+3是二次函数,那么k______.2、函数y=,当k=______时,它的图象是开口向下的抛物线;此时当x______时,y随x的增大而减小.3、二次函数y=-x2,当x1 __(填序号).①m ②m>0,n<0 ③m<0,n>0 ④m>n>05、写出一个开口向上,顶点是坐标原点的二次函数的表达式:__ _.6、假设抛物线y=ax2经过点A(,-9),那么其表达式为_______________。 7、函数y=2x2的图象对称轴是______,顶点坐标是______.8、直线y=x+2与抛物线y=x2的交点坐标是______.二、相信你的选择 9、以下函数中,具有过原点,且当x>0时,y随x增大而减小,这两个特征的有〔 〕 ①y=-ax2(a>0) ②y=(a-1)x2(a<1) ③y=-2x+a2(a≠0) ④y=x-a A.1个 B.2个 C.3个 D.4个 10、以下说法错误的选项是〔 〕 A.二次函数y=3x2中,当x>0时,y随x的增大而增大 B.二次函数y=-6x2中,当x=0时,y有最大值0 C.a越大图象开口越小,a越小图象开口越大 D.不管a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点 11、在同一坐标系中,作y=x2,y=-x2,y=x2的图象,它们的共同特点是〔 〕 A.抛物线的开口方向向上 B.都是关于x轴对称的抛物线,且y随x的增大而增大 C.都是关于y轴对称的抛物线,且y随x的增大而减小 D.都是关于y轴对称的抛物线,有公共的顶点 12、假设对任意实数x,二次函数y=(a+1)x2的值总是非负数,那么a的取值范围是〔 〕 A.a≥-1 B.a≤-1 C.a>-1 D.a<-113、如图1,函数y=-a(x+a)与y=-ax2(a≠0)在同一坐标系上的图象是〔 〕 图114、直线y=x与抛物线y=-2x2的交点是〔 〕 A.(,0) B.(-,-) C.(-,-),(0,0) D.(0,0) 15、a<-1,点(a-1,y1),(a,y2)(a+1,y3)都在函数y=x2的图象上,那么〔 〕 A.y1 B.y1 C.y3 D.y2 〕 A.顶点坐标 B.开口方向 C.开口大小 D.对称轴 17、函数y=ax2(a≠0)的图象经过点(a,8),那么a的值为〔 〕 A.±2 B.-2 C.2 D.3 三、解答题 18、二次函数y=ax2与直线y=2x-1的图象交于点P(1,m).(1)求a、m的值; (2)写出二次函数的表达式,并指出x取何值时,该表达式的y随x的增大而增大.19、影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究说明,晴天在某段公路上行驶时,速度v(km/h)的汽车的刹车距离s(m)可以由公式s=v2确定;雨天行驶时,这一公式为s=v2.(1)如果行车速度是70 km/h,那么在雨天行驶和在晴天行驶相比,刹车距离相差多少米? (2)如果行车速度分别是60 km/h与80 km/h,那么同在雨天行驶(相同的路面)相比,刹车距离相差多少? (3)根据上述两点分析,你想对司机师傅说些什么? 20、直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).(1)求直线和抛物线所表示的函数表达式; (2)在抛物线上是否存在一点D,使得S△OAD=S△OBC,假设不存在,说明理由;假设存在,请求出点D的坐标,与同伴交流.21、一次函数y=ax+b的图象上有两点A、B,它们的横坐标分别是3,-1,假设二次函数y=x2的图象经过A、B两点.(1)请求出一次函数的表达式; (2)设二次函数的顶点为C,求△ABC的面积. 练习 【动动手、动动脑,让我们课堂更精彩!】 1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2. (1)填空:A点坐标为(,);B点坐标为(,);D点坐标为(,)、对称轴为 ;直线AC的函数表达式为.(2)P是线段AC上的一个动点,其横坐标为m,过P点作y轴的平行线交抛物线于E点.①线段PE长为(用含m的代数式表示); ②是否存在实数m,使△ACE的面积最大?若存在,求出m的值;若不存在,请说明理由.(3)若动点P在直线AC上运动,以PE为直径的圆与y轴相切时,求点P的坐标.y y l l xAOxB AOBP P D CDCE E 备用图 【问1】:在抛物线对称轴上是否存在一点Q,使QA+QD最小?若存在,求出Q点的坐标;若不存在,请说明理由.【拓展问1】:抛物线的对称轴上是否存在一点M,使|MA-MD|最大?若存在,求出M点的坐标;若不存在,请说明理由.【问2】:点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由. ..【问3】:在本题的背景下,你还能提出什么问题来解答? 二次函数练习 1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________ 2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------3,二次函数yx2(a2)x5在区间2,上是增函数,则a的取值范围是_______________ 4,已知函数f(x)mx2(m3)x1的图像与X轴的交点至少一个在原点的右侧,求实数m的范围。 5,已知不等式ax2 xc0的解集为xx1,x5则a=______c=___________ 6,已知二次函数fx同时满足条件:(1)f1xf1x;(2)fx的最大值为15;方程fx=0的两根的平方和为4,求fx的解析式。 7,已知不等式x22x30的解集为A,不等式x2x60的解集为B,不等式x2axb0的解集为AB, 求a,b的值。 8,已知不等式ax25xb0的解集为x3x2,求不等式bx25xa0的解集 9,解不等式: 2x2ax20x2(a1 a)x10 10.(2009安徽卷)(本小题满分12分)已知函数f(x)x x a(2lnx),(a0),讨论f(x)的单调性. 用待定系数法求二次函数解析式 靖和中心学校 王军 一、教学目标 知识目标:通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。 能力目标:能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。情感价值观 :让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣。 二、教学重难点 重点:会根据不同的条件,利用待定系数法求二次函数的函数关系式 难点:在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质解决生活中的实际问题 三、教学方法:探究法、引导法、归纳法、讲解法 四、教学教具准备:三角板、课件 五、教学时间:1课时 六、教学过程 (一)温故而知新 问题一:(课件展示) 问题二:(课件展示)问题三:(课件展示) 先让学生看教材问题2,让学生知道在解决实际问题时,往往需要根据某些条件求出函数关系式。在函数关系式中有几个独立的系数,需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数的关系式时,通常需要两个独立的条件,确定反比例函数的关系式时,通常只需要一个条件,在确立正比例函数的解析式时,也只要一个条件就行了,下面我们来探讨,要确定二次函数的解析式,需要几个条件? 归纳总结:二次函数常见的几种表达方式: (二)例题讲解 例1、已知二次函数的图象过A(0,-3),B(4,5),C(-1,0)三点,求这个二次函数解析式。(设为三点式可解) 小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。变式训练: 1、已知一个二次函数的图象过点(0,-3),(-1,0),(3,0)三点,求这个函数的解析式? 2、已知一个二次函数的图象过点(0,-3)(4,5)对称轴为直线x=1,求这个函数的解析式? 例 2、已知抛物线的顶点为(1,-4),且与y轴交于点(0,-3);求这个二次函数解析式。(设为顶点式可解) 小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。请大家试一试,比较它们的优劣。 例 3、已知抛物线与X轴交于A(-1,0),B(1,0)并经过点M(0,1),求抛物线的解析式? 小结: 已知抛物线与x轴的两个交点坐标时,可选用二次函数的交点式:y=a(x-x1)(x-x2),其中x1,x2 为两交点的横坐标。变式训练:(课件展示)达标检测:(课件展示) 1、由学生小组讨论,合作交流自己完成。 2、同时,让学生演算,尝试完成。 3、老师点拨。 讨论:某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶. 它的拱宽AB为4 m,拱高CO为0.8 m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?(1)学生建立坐标系,解答。(2)让学生说一说如何解答的?(3)观察那些方法较为简单?(4)总结应用型函数的解答思路。 (三)课堂小结 1、二次函数解析式常用的有三种形式:(1)一般式:_______________(a≠0)(2)顶点式:_______________(a≠0)(3)两根式:_______________(a≠0) 2、本节课是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式: (1)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。 (2)当已知抛物线的顶点坐标(或能求出顶点坐标)、对称轴、最值等与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。(h、k分别是顶点的横坐标与纵坐标)(3)当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)。(其中x1、x2是抛物线与x轴两交点的横坐标) 七、作业布置:(见课件)【课后反思】:第三篇:二次函数练习
第四篇:二次函数练习
第五篇:求二次函数的解析式教案