第一篇:数列中一类问题的探究
2013届高三理科数学研究性学习(7)
专题五:一类数列中的充要条件的探究
1.已知数列an满足anan12n1(nN*),求证:数列{an}为等差数列的充要条件 是a11.(完成在苏大教学与测试上)
变式1:若数列{anan1}为公差为d的等差数列,试探究数列{an}为等差数列的充要条件,并加以证明.变式2:已知正项数列an满足anan122n1(nN*),求证:数列{an}为等比数列的充要条件是a12.变式3:若正项数列{an}满足:数列{anan1}为公比为q的等比数列,试探究数列{an}为等比数列的充要条件,并加以证明.
第二篇:数列求和问题
数列求和问题·教案
教学目标
1.初步掌握一些特殊数列求其前n项和的常用方法.
2.通过把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和问题,培养学生观察、分析问题的能力,以及转化的数学思想.
教学重点与难点
重点:把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和. 难点:寻找适当的变换方法,达到化归的目的. 教学过程设计
(一)复习引入
在这之前我们知道一般等差数列和等比数列的求和,但是有时候题目中给我们的数列并不是一定就是等比数列和等差数列,有可能就是等差数列和等比数列相结合的形式出现在我们面前,对于这样形式的数列我们该怎么解决,又该用什么方法?
二、复习预习
通过学习我们掌握了是不是等差等比数列的判断,同时我们也掌握也一般等差或者等比数列的一些性质和定义,那么对于题中给我们的数列既不是等差也不是等比的数列怎么求和呢,带着这样的问题来学习今天的内容
三、知识讲解 考点
1、公式法
如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n项和的公式来求.1、等差数列求和公式:Snn(a1an)n(n1)na1d 22(q1)na1
2、等比数列求和公式:Sna1(1qn)a1anq
(q1)1q1qn113、Snkn(n1)
4、Snk2n(n1)(2n1)
26k1k1n15、Snk3[n(n1)]2
2k1n
考点
2、分组求和法
有一类数列,它既不是等差数列,也不是等比数列.若将这类数列适当拆开,可分为几个等差、等比数列或常见的数列,然后分别求和,再将其合并即可.例求和:Sn2351435263532n35n 解:Sn2351435263532n35n
2462n35152535n
4,6,,2n练习:求数列2,14181161,的前n项和Sn. 2n111{2n},而数列是一个等差数列,数列n1是一个等比
2n12分析:此数列的通项公式是an2n数列,故采用分组求和法求解.
111111解:Sn(2462n)234n1n(n1)n1.
222222小结:在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们就用此方法求和.考点
3、、倒序相加
类似于等差数列的前n项和的公式的推导方法。如果一个数列{an},与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。
这一种求和的方法称为倒序相加法.这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1an).例求sin21sin22sin23sin288sin289的值
解:设Ssin21sin22sin23sin288sin289„„„„.①
将①式右边反序得
Ssin289sin288sin23sin22sin21„„„„..②(反序)
又因为 sinxcos(90x),sin2xcos2x1
①+②得(反序相加)
2S(sin21cos21)(sin22cos22)(sin289cos289)=89 ∴ S=44.5
2x练习:已知函数fxx 22(1)证明:fxf1x1;
1(2)求f102f108f109f的值.10解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,1f1092ff10108f108f102f105f105f1 101令Sf109则Sf102f108f109f 101f 10两式相加得:
2S9
1f1099f9 所以S.210小结:解题时,认真分析对某些前后具有对称性的数列,可以运用倒序相加法求和.考点
4、裂相相消法
把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。适用于类似
(其中{an}是各项不为零的等差数列,c为常数)的数列、部分无理数列等。用裂项相消法求和,需要掌握一些常见的裂项方法:
1,求它的前n项和Sn
n(n1)例、数列an的通项公式为an解:Sna1a2a3an1an
11111 122334n1nnn1111111111 =1
22334n1nnn11n n1n1小结:裂项相消法求和的关键是数列的通项可以分解成两项的差,且这两项是同一数列的相邻两项,即这两项的结构应一致,并且消项时前后所剩的项数相同.1针对训练
5、求数列 1111,,,的前n项和Sn.122332nn1练习:求数列112,1231,,1nn1,的前n项和.解:设annn11n1n(裂项)
1nn1则 Sn12312(裂项求和)
=(21)(32)(n1n)
=n11
作业:基本练习
2221、等比数列{an}的前n项和Sn=2n-1,则a12a2=________________.a3an2、设Sn1357(1)n(2n1),则Sn=_______________________.3、111.1447(3n2)(3n1)
4、1111=__________ ...243546(n1)(n3)
5、数列1,(12),(1222),,(12222n1),的通项公式an,前n项和Sn 综合练习1、1222324252629921002=____________;
2、在数列{an}中,an1,.则前n项和Sn;
n(n1)(n2)n2an(n1)(n2),n3、已知数列{an}满足:a16,an1(1)求a2,a3;(2)若dn an,求数列{dn}的通项公式;
n(n1)
考点5错位相减
类似于等比数列的前n项和的公式的推导方法。若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法.若anbncn,其中bn是等差数列,cn是公比为q等比数列,令
Snb1c1b2c2bn1cn1bncn
则qSnb1c2b2c3bn1cnbncn1 两式相减并整理即得
例4 求和:Sn13x5x27x3(2n1)xn1„„„„„„„„„①
解:由题可知,{(2n1)xn1}的通项是等差数列{2n-1}的通项与等比数列{xn1}的通项之积
设xSn1x3x25x37x4(2n1)xn„„„„„„„„„.②(设制错位)
①-②得(1x)Sn12x2x22x32x42xn1(2n1)xn(错位相减)
1xn1(2n1)xn 再利用等比数列的求和公式得:(1x)Sn12x1x(2n1)xn1(2n1)xn(1x)∴ Sn 2(1x)小结:错位相减法的步骤是:①在等式两边同时乘以等比数列{bn}的公比;②将两个等式相减;③利用等比数列的前n项和公式求和.2462n练习:
1、求数列,2,3,,n,前n项的和.22222n1解:由题可知,{n}的通项是等差数列{2n}的通项与等比数列{n}的通项之积
222462n设Sn23n„„„„„„„„„„„„„①
222212462nSn234n1„„„„„„„„„„„„②(设制错22222位)
1222222n①-②得(1)Sn234nn1(错位相减)
222222212n2n1n1
22n2 ∴ Sn4n1
2、已知 ann2n1,求数列{an}的前n项和Sn.解:Sn120221(n1)2n2n2n1 ①
2Sn121222(n1)2n1n2n ②
②—①得
Snn2n120212n1n2n2n1
1352n13、6、,2,3,,n,;的前n项和为_________ 222264、数列{an}中, a11,anan1n1,nN*,则前n项和S2n=;
55、已知数列annn!,则前n项和Sn=;
小结:错位相减法的求解步骤:①在等式两边同时乘以等比数列cn的公比q;②将两个等式相减;③利用等比数列的前n项和的公式求和.
第三篇:数列问题练习
数列练习
1、(09重庆理)设a12,an1
2a2,nN*,则数列bn的通项公式bn.bnn
an1an1
1
2、(08江西理)在数列an中,a12,an1anln1,则an=?
n
3、(10全国理)设数列{an}满足a1=2,an+1-an=3·22n-1.(1)求数列{an}的通项公式;(2)令bn=nan,求数列{bn}的前n项和Sn.24、(13江西理)正项数列{an}的前项和{an}满足:sn(n2n1)sn(n2n)0
(1)求数列{an}的通项公式an;(2)令bn
5n1*
TnN,数列{b}的前项和为。证明:对于任意的,都有.Tnnnn22
64(n2)a5、(13广东理)设数列an的前n项和为Sn.已知a11,2Sn12
an1n2n, n33
nN*.(Ⅰ)求a2的值;(Ⅱ)求数列an的通项公式;
(Ⅲ)证明:对一切正整数n,有
a1a2
17.an46、(12广东理)设数列{an}的前n项和为Sn,满足2Snan12n11,n∈N﹡,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式.
7、(12江苏)已知各项均为正数的两个数列{an}和{bn}满足:an1
bnb
1,nN*,求证:数列n
aann
anbnanbn,nN*,(1)设bn1
是等差数列;
8、(11广东)设b>0,数列an满足a1=b,an
nban1
(n2)求数列an的通项公式;
an12n2,9、(10湖北理))已知数列an满足: a1
131n121n, 21an1an1
aa
n
数列n10n1;
b满
n
足:bn =an12-an2(n≥1).(Ⅰ)求数列an,bn的通项公式;
10、(11安徽)在数1和100之间插入n个实数,使得这n2个数构成递增的等比数列,将这n2个数的乘积记作Tn,再令anlgTn,n≥1.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bntanantanan1,求数列{bn}的前n项和Sn.
第四篇:等差、等比数列子数列性质的探究
等差、等比数列的子数列探究
【教学目标】
经历等差数列与等比数列子数列的性质的研究过程,体验“归纳——猜想——论证”的数学发现的科学方法;体会从特殊到一般、类比等数学思想,获得数学发现与研究的乐趣。
【教学重点】
归纳-猜想-论证、从特殊到一般、类比等数学思想方法的体验与认识。
【教学难点】
“归纳——猜想——论证”等数学数学思想方法的习得。
【教材分析】
前段时间,高三学生已经进行了数列的系统复习,掌握了等差、等比数列的定义与应用;学习了解决数列问题的“基本量法”、“类比”、“归纳、猜想、论证”等数学思想方法,本课主要通过等差、等比子数列的研究,强化数学的学习过程,加深对于数学本质的理解,规范解决数学问题的基本方法与要求,获得数学概念学习的新的体会。
【学情分析】
从学生的认知基础看,学生已经对于等差、等比数列有了较好的理解与认识,也能够开展对于数学新问题的学习与研究能力;从学生的思维发展看,高三学生已经具备了一定的研究与学习有关新概念与新问题的能力。
【问题提出】
在数列研究的过程中,等差数列与等比数列是两个十分重要的数列;我们已经研究了等差数列与等比数列的一些性质,这两节课,我们将研究了从等差及等比数列中取出部分的项,按原来的顺序组成的一个“子数列”所具有的性质;研究这些数列的的一般特征与规律。
观察下列数列,试写出一个符合前4项的通项公式,指出它们具有什么性质?
(1)1,2,3,4,...;
(2)2,4,6,8,...;
(3)1,3,5,7,...;
(4)1,2,4,8,...(4)5,9,13,17,...(5)2,5,8,11,...(6)1,4,16,64,...(7)5,20,80,320,...(设计意图:学生通过从特殊到一般的归纳与猜测,获得各数列的通项公式;指出其一般特性;体验通项公式的猁过程,逐步获得子数列的概念。)
【问题探究】
1)教师提问:观察上述数列,从数列的项来看,他们间存在什么联系吗?
2)形成子数列定义:给定无穷数列an,数列an中任取无穷多项,不改变它们在原来数列中的先后次序,得到新的数列ak1,ak2,ak3,...,ak,...(k...1k2k3 n
kn...,k1,k2,k3,knN)称为数列an的一个子数列。
3)指出上述数列中子数列关系。
结论:任何一个无穷数列都存在无穷多个子数列。
问题
一、数列an是无穷等差数列,问:数列an是否存在等差的子数列? 研究:
1、设ana(a为常数),则任取一些项组成的数列都是等差子数列。
2、ann中有子数列bn2n1,bn2n,bn5n等。
3、an
1n1中有子数列bn3n1,bnn等 2224、数列an是等差数列,若k1k2k3...kn...,k1,k2,k3,knN),当ak1t,且m的等差数列时,ak1,ak2,ak3,...,ak是数列an的一个首项为t,k1,k2,k3,...nk,是公差为,...,...n公差为md的等差子数列。证明:略。
方法小结:
(1)只要首项不同,公差不同就可以确定不同的等差子数列。
(2)从具体的例子中小结出如何寻找等差子数列,以及子数列的公差和原数列的公差之间的关系,从而得出结论:
1)2)
等差数列中下标成等差数列(公差为k)的项仍然成等差数列。新的等差数列的公差等于原等差数列的公差的k倍。
(设计意图:研究问题的1以及2,在前面已经解决过,只是让学生通过复习,加深对于子数列的理
解;问题3的解决,是为归纳猜想作必要的准备;问题的证明,是为了规范学生的表达形式。)
问题
二、数列an是等比数列,问:数列an是否存在等比的子数列?
1、设ana(a为常数),则任取一些项组成的数列都是等比子数列。
2、an2n中有子数列bn22n1和bn25n等。
3、an2()
n
1中有子数列bn2()等。
n4、数列an是等比数列,若k1k2k3...kn...,k1,k2,k3,knN),当ak1t,且m的等差数列时,ak1,ak2,ak3,...,akn,...是数列an的一个首项为t,k1,k2,k3,...nk,是公差为,...公比为qk的等比子数列。
证明结论:设an是等比数列,q是公比,若am,an为常数时,an
qnm,当nmkam
an
qnmqk也是常数。am
方法小结:
(1)只要首项不同,公比不同就可以确定不同的等比子数列。
(2)从具体的例子中小结出如何寻找等比子数列,以及子数列的公比和原数列的公比之间的关系,从而得出结论: 1)
等比数列中下标成等差数列(公差为k)的项仍然成等比数列。
2)法。)
新的等比数列的公比等于qk。
(设计意图:学习类比的数学思想方法;进一步体会从特殊到一般,归纳——猜想——论证的数学思想方问题
三、数列an是等差数列,问:数列an是否存在等比的子数列?
1、若an=n,求数列an的等比子数列? 子数列bn=
2n
1和bn=
3n1
等。
(自然数列是学生最容易想到的,除了自然数列之外,其他的数列不容易想到)
2、给出一个例子一起研究。
例题1:已知:等差数列an,且an3n1。问:等差数列an中是否存在等比子数列cn?(1)写出an的一些项:2,5,8,11,14,17,20,23,26,29,32,„,学生尝试后找出结果有:
①2,8,32,128,512,„,24n1;②2,14,98,686,4802, „,27
n
1;③2,20,200,2000, „,210n1;④5,20,80,320, „,54n1;⑤2,26,338, „,213n1
(2)猜想:①cn24n1;②cn27n1;③cn210n1;④cn54n1;⑤
cn213n1
(3)提问:这些猜想是否正确呢?
我们可以从两个方面进行思考:通过演绎推理证明猜想为真,或者找出反例说明此猜想为假,从而否定或修正此猜想。(4)学生分组证明猜想
分析:24∵2
4n1
n1的项被3除余2,从而得出利用二项式定理证明的方法。
证1:(用二项式定理)
2(31)n12(3k1)6k2(kN),即24n1除以3余2,∴cn是an的子数列。
分析 :由前面几项符合推广到无穷项都符合,从而得出利用数学归纳法证明的方法。证2:(数学归纳法)
① 当n=1时,c12311a1
② 假设当n=k时,ck22k13m1am(mN),那么当n=k+1时,ck1
22(k1)122k1422k14(3m1)3(4m1)1a4m1.由①、②得cn是an的子数列。
n1n
1c272(61)3k2,kN;n(5)同理证明
cn210n12(91)n13k2,kN,cn54n15(31)n13k2,kN;cn213n12(121)n13k2,kN.(6)引申:让学生找规律——以an中任一项为首项,以3k1(kN)为公比的等比数列均是该等差
数列的等比子数列
(7)小结:归纳法是从特殊到一般的推理方法,而由此所作出的猜想是需要进一步证明的。从归纳猜
想到论证的思维方法是我们研究数学问题常用的方法。
(8)思考:对给定的等差数列可以构造出等比数列,不确定的等差数列中是否存在等比数列?
【方法总结】
1、“归纳——猜想——论证”是数学发现的方法,从特殊到一般的数学思想方法,是研究数学问题的常用方法;
2、研究性学习,是数学思维培养的重要手段;
3、合作学习方式,是研究性学习的有效途径。
【方法应用】
思考
1、等比数列是否存在等差子数列?请举例说明,并研究一般规律。
思考2: 已知:数列an是首项a12,公差是d的等差数列。数列bn是等比数列,且
b1a1,b2a2。问:是否存在自然数d,使得数列bn是数列an的子数列?如存在,试求出d的一
切可能值。
思考
3、数列an是等比数列,问:数列an是否存在等差的子数列? 分析:先取d=1,2,3,4,5,6。发现当d是奇数时,不可能。∵a2是奇数,∴公比
a2an
1为分数,则bn2(2)从第三项开始就不是自然数
2取d=2,an:2,4,6,8,„,bn:2,4,8,16,„,an2n,bn2n,2n是偶数,∴d=2时,数列bn是数列an的子数列,取d=4,an:2,6,10,14,18,„,bn:2,6,18,54,„,an4n2,bn23n12(41)n12(4k1)42k2(kN),∴d=4时,数列bn是数列an的子数列。同理d=6时,数列bn也是数列an的子数列。由此猜想当d2m(mN)时,数列bn是数列an的子数列。可以用二项式定理或数学归纳法证明。
证1:(用二项式定理)在an中,a12,d2m,an2(n1)2m.在bn中,b1=2,b222m,q
则2(m1)
k1
22m
1m,bn2(1m)n1。令bkan(k3), 2
1k2
=2(n1)2m.(m1)k11(n1)m,mk1Ck 1m
2k21k32
an中的CkkCkCkk1m11(n1)m,可解出n1m1m1N,即bk为
某一项。
证2:(数学归纳法)①当n=1时,b1a1;②假设bk是an的第p项,即
2(m1)k122m(p1),则bk1bk(m1)22m(p1)(m1)=2+
2mm(p1)p11即bk1是an中的第m(p-1)+p+1项。由①、②得,数列bn是数列an的子
数列。
第五篇:植树问题探究
植树问题
学情分析:
由于学生初次接触植树问题,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨。这部分内容对学生来说,是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此在教学过程中对教科书内容进行适当调整,并充分利用学生原有的知识和生活经验来组织学生开展各个环节的数学活动。
教学目标:
1.通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
3.通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
教学重、难点:
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
教学准备:
课件、教具
教学过程:
一:复习导入:
同学们,我们开始上课。看黑板上这样一个问题:20米的路,每5米分一段,共分成几段?会做的请举手。(回顾“平均分”知识)
再看老师给大家准备的第二道题目,大家一起来读一读:20米的路,每5米种一棵树,共种几棵树?(指名学生汇报)这就是我们今天要研究的植树问题。(板书:植树问题)
二:互动新授
同学们,那么到底种多少棵树呢?接下来让我们自己动手来研究一下。(小组活动)
小组展示:你们组是怎么种的?树是种在哪里?(点上)
总结:哦!我们种树先平均分分出“段”来,再把树种在点上。那么,点和段之间有什么关系?(点比段多1)
结论:20米长的路,平均分成4段,共5个点,所以种了5棵。
在植树问题里,我们两棵树之间的距离叫做间隔米数,这里的段数叫做间隔数。那么我们间隔数怎么计算呢?(间隔数=路长÷间隔米数)我们种的棵数和间隔数之间的关系是什么?(棵数=间隔数+1)那如果是25米的路呢?要种几棵树?35米呢?
好,同学们,生活中的种树很复杂的。大家看,我在路尽头造了一个房子。那么现在棵树和间隔数之间有什么关系呢?(棵数=间隔数+1再减1,也就是棵数=间隔数)。
如果我在路的两端都造了房子呢?你怎么种?所以我们这个规律要变成:棵数=间隔数+1再减2,也就是棵数=间隔数-1
三、拓展练习
1.同学们在全长 100 m 的小路一边植树,每隔 5 m 栽一棵(两端要栽)。一共要栽多少棵树?
2.在一条全长 2 km 的街道两旁安装路灯(两端也要安装),每隔 50 m 安一盏。一共要安装多少盏路灯?
3.小明家门前有一条 35 m 的小路,绿化队要在路旁栽一排树。每隔 5 m 栽一棵树(一端栽,一端不栽)。一共要栽多少棵?
4.大象馆和猴山相距 60 m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是 3 m。一共要栽多少棵树?
四、课堂总结:
通过本节课的种树,你有什么收获?
板书设计
植树问题
点=段+1
间隔数=路长÷间隔米数
两端要栽 棵树=间隔数+1
一端栽一端不栽 棵树=间隔数
两端不栽 棵树=间隔数-1
教学反思:本节课的小组活动中,是由我准备好一张纸条代表路,还有几棵树,让学生在纸上摆放,可能在无形中误导学生进行两端都栽树,导致试教和正式上课中都没有出现两端不栽或者一端栽一端不栽的情况,阻碍了学生的思维发挥。在以后的教学中,我认为还是让学生自己在草稿纸上进行画线段图种树,这样可以发散学生的思维,不受误导。另外,在教学上刚开始复习的平均分概念和植树中的联系上衔接的不够好,导致平均分概念复习的有些多余。如何从平均分引导到点段区别再到植树问题上的棵数,需要再多揣摩。