第一篇:习题课1—数列极限2009
《数学分析I》第1次习题课教案
第一次习题课(数列极限)
一、内容提要
2n2121.数列极限定义,验证limn3n22n13.2.极限性质(唯一性、有界性、保号性、保不等式).3.极限四则运算.求limn1nn
2n(n),limn(1nn2)
4.收敛准则(迫敛准则、单调有界准则、柯西收敛准则).二、客观题
1.设f(x)1,x
1x1,则ff(x)___________.0,2.若数列{xx
n}与{yn}发散,问数列{xnyn},{xnyn},{n
y}是否一定发散?
n
3.若数列xn收敛,列yn发散,则数列xnyn是否存在?
4、若单调数列{an}含有一个收敛的子数列,则数列{an}必收敛().5、若数列{an}发散,则{an}必为无界数列().6.当()时,有lim(k
n1n)ne.三、计算题
1.一些重要结论:
lim(n1n
nn)e,limn(n1n)ne1,limnqn0,(|q|1),limna1,(a0),limnn21.2.计算下列极限
(1)limsinn
nn0(M).(2)lim
1n(2n1n2n2n2)2(求和法).(3)lim(1
nn21
2n2n
2n2n)(夹逼).(4)limn(113n1nn2),(4)limn(1n2).(5).设f(x)axa0,a1,求lim1
nn2lnf(1)f(2)f(n).1limnn1,《数学分析I》第1次习题课教案 xn1ann!(6)设xn,求极限.limnnnxn
四、证明题
1.已知limana,证明极限limn[nan]a.nn1
cos1cos2cosn2n,(n1,2,,)是收敛数列.2222..应用柯西收敛准则,证明an
3.设x1a0,xn112(xn),证明:数列{xn}收敛并求其极限(单调有界原理).2xn
n4.按数列极限的N定义证明limn22n210.anbnn1,2,,试证明数列{an},bn1anbn,25.给定两个正数a1与b1(a1b1),我们令an1
与{bn}的极限皆存在,并且limanlimbn.nn
6.设an0,limana0,证明limn1.nn
第二篇:数列极限例题
三、数列的极限
(1)n1}当n时的变化趋势.观察数列{1n问题:
当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:
(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定
11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义
如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为
limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:
N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:
a2axN2x2x1xN1ax3x
当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证
注意到xn1 nn任给0, 若要xn1, 只要
11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn
重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;
n(1)n11”的详细推理
(2)逻辑“取 N[], 则当nN时, 就有
n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得
1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就
n是成立
n(1)n111.xn1=
nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证
任给0(要求ε<1)若q0, 则limqlim00;
nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n
说明:当作公式利用:limq
n1, q1,不存在,q1.
第三篇:数列极限教案
数列的极限教案
授课人:###
一、教材分析
极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。
二、教学重点和难点
教学重点:数列极限概念的理解及数列极限N语言的刻画。
教学难点:数列极限概念的理解及数列极限N语言的刻画,简单数列的极限进行证明。
三、教学目标
1、通过学习数列以及数列极限的概念,明白极限的思想。
2、通过学习概念,发现不同学科知识的融会贯通,从哲学的量变到质变的思想的角度来看待数列极限概念。
四、授课过程
1、概念引入
例子一:(割圆术)刘徽的割圆术来计算圆的面积。
.........内接正六边形的面积为A1,内接正十二边形的面积为A2......内接正62n1形的面积为An.A1,A2,A3......An......圆的面积S.用圆的内接正六n边形来趋近,随着n的不断增加,内接正六n边形的面积不断
1接近圆的面积。
例子二:庄子曰“一尺之锤,日取其半,万世不竭”。
第一天的长度1第二天的剩余长度 第二天的剩余长度
第四天的剩余长度 8
.....第n天的剩余长度n1.......2
随着天数的增加,木杆剩余的长度越来越短,越来越接近0。
这里蕴含的就是极限的概念。
总结:极限是变量变化趋势结果的预测。例一中,内接正六n边形的边数不断增加,多边形的面积无限接近圆面积;例二中,随着天数的不断增加,木杆的剩余长度无限接近0.在介绍概念之前看几个具体的数列:
1111(1): 1,,......; 23nn
1n1111:1,,,......;(2)n2345
(3)n2:1,4,9,16,......;
(4)1:1,1,1,1,......,1,......; nn
我们接下来讨论一种数列xn,在它的变化过程中,当n趋近于时,xn不断接近于某一个常数a。如随着n的增大,(1),(2)中的数列越来越接近0;(3)
(4)中的数列却没有这样的特征。
此处“n趋近于时”,“xn无限接近于数a”主要强调的是“一个过程”和一种“接近”程度。
可是只凭定性的描述和观察很难做到准确无误,所以需要精确的,定量的数学语言来刻画数列的概念。本节课的重点就是将数列的这样一个特征用数学语言刻画出来,并引入数列极限的概念。
2、内容讲授
(定义板书)设xn是一个数列,a是实数。如果对于任意给定的数0,总存在一个正整数N,当nN时,都有xna,我们称a是数列x
n的极限,或者说数列xn收敛且收敛于数a。
写作:limxna或xnan。
n
如果数列没有极限,就说数列是发散的。
注意:(1)理解定义中的“任意给定”:是代表某一个正数,但是这个数在选取时是任意的,选定以后就是固定的。不等式xna是表示xn与a的接近程度,所以可以任意的小。
(2)N的选取是与任意给定的有关的。11以数列为例,欲若取,则存在N100,当nNxna; 100n
若取1,则存在N1000,当nN时,xna。1000
数列极限的N语言:
limx
nna0,N,nNxna.数列极限的几何解释:
3、例题讲解
n211。例题1用数列极限的定义证明limnnn
n21证明:设xn,因为 nn
n21212xn1nnnnn
0,欲使xn,只要22即n,n
2我们取N1,当nN时,
n2122.nnNn
n21所以lim1.nnn
2注:N的取法不是唯一的,在此题中,也可取N10等。
例题2 设xnC(C为常数),证明limxnC。n
证明:任给的0,对于一切正整数n,xnCCC0,所以limxnC。n
小结:用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.五、课后作业
第四篇:数列极限复习
数列极限复习题
姓名
242n1、lim=; n139(3)n
an22n1a2、若lim(2n)1,则=; nbn2b
1an3、如果lim()0,则实数a的取值范围是;n2a
n4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范围是n
___;
a5.已知无穷等比数列n的前n项和
穷等比数列各项的和是;
6、数列an满足a1Sn1a(nN*)n3,且a是常数,则此无1,且对任意的正整数m,n都有amnaman,则数列an的3所有项的和为;
7、无穷等比数列an的首项是某个自然数,公比为单位分数(即形如:数,m为正整数),若该数列的各项和为3,则a1a2;
8、无穷等比数列an的各项和为2,则a1的取值范围是
1的分m
9、无穷等比数列an中,为;
lim(a2a3...an)
n
=1,则a1的取值范围
cosnsinn
10、计算: lim,[0,]
ncosnsinn
222na2n111、若lim2n1,则实数a的取值范围是; 2n
12a
23n2n(1)n(3n2n)
12、若数列{an}的通项公式是an=,n=1,2,„,则
lim(a1a2an)__________;
n
1
1n2012n(n1)
13、若an,Sn为数列an的前n项和,求limSn____;
n
31n2013n1
214、等差数列an,bn的前n项和分别为Sn,Tn且
an
nbn
Sn2n
,则Tn3n
1lim15、设数列an、bn都是公差不为0的等差数列,且lim
lim
b1b2b3n
na4n
an
3,则bn16、已知数
列为等差数列,且,则
a117、设等比数列{an}的公比为q,且lim1qn),则a1的取值范围是
n1q
2__________;
18、已知等比数列{an}的首项a11,公比为q(q0),前n项和为Sn,若
lim
Sn
11,则公比q的取值范围是.;
nSn19、已知数列{an}的各项均为正数,满足:对于所有nN*,有4Sn(an1)2,n
()其中Sn表示数列{an}的前n项和.则limnan
A.0B.1C.D.
220、下列命题正确的是 „„„„„„„„„„„„„„„„„„„„„„„„„()
(A)limanA, limbnB则lim
n
n
anA
(bn0,nN)
nbBn
(B)若数列{an}、{bn}的极限都不存在,则{anbn}的极限也不存在(C)若数列{an}、{anbn}的极限都存在,则{bn}的极限也存在(D)设Sna1a2an,若数列{an}的极限存在,则数列{Sn}的极限也存在21、用记号“○+”表示求两个实数a与b的算术平均数的运算, 即a○+b=已知数列{xn}满足x1=0,x2=1,xn=xn-1○+xn-2(n≥3),则limxn等于()
n
ab
.2A.2
3B.12
C.0D.122、连结ABC的各边中点得到一个新的A1B1C1,又A1B1C1的各边中点得到一个新的A2B2C2,如此无限继续下去,得到一系列三角形,A1B1C1,A2B2C2,A3B3C3,, 这一系列三角形趋向于一个点M。已知
A0,0,B3,0,C2,2,则点M的坐标是()
52522A、(,)B、(,1)C、(,1)D、(1,)
3333323、已知数列
lim
{an},{bn}
都是无穷等差数列,其中
a13,b12,b2是a2和a
3的等差中
an1111lim(...)nbn2,求极限a1b1a2b2anbn的值; n项,且
24、设正数数列
lga
lin
1n
an
为一等比数列,且a24,a416,求
lagn2n
2al2ng;
bnlgan,25、数列{an}是由正数组成的数列,其中c为正常数,数列bna1c,成等差数列且公差为lgc(1)求证an是等比数列;(2)an的前n项和为Sn,求lim26、已知f(x)logax(ao且a1),an
nSn
且2,f(a1),f(a2),f(a3),,f(an),2n1,(nN)成等差数列,(1)求数列an的通项公式;
(2)若数列an的前n项和为Sn,当a1时,求lim
Sn
nan
第五篇:习题课2—函数极限2009
《数学分析I》第2次习题课教案
第二次习题课(函数极限、无穷小比较)
一、内容提要
1.函数极限定义,验证limx12.x
32.极限性质(唯一性、局部有界性、局部保号性、保不等式).e3xe2x
3.极限四则运算.求lim.x0x
4.收敛准则(迫敛准则、柯西收敛准则、归结原则).5.无穷小与无穷大(无穷小比较、等价无穷小替换定理、渐近线的求法).6.重要极限与常用等价无穷小.二、客观题
1.当x0时,下列四个无穷小中,()是比其它三个更高阶的无穷小.为什么?
2(A)x2;(B)1cosx;(C)x1;(D)tanxsinx
2.已知limsinx(cosxb)5,则a(),b().x0exa
23.当x0 时,xsinx 是 x 的().(A)低阶无穷小;(B)高阶无穷小;(C)等价无穷小;(D)同阶无穷小但非等价无穷小.4.设f(x)lim3nx,则它的连续区间是().n1nx
25.当x→0时下列变量中与x是等价无穷小量的有[].(A)sinx;(B)ln(1x);(C)x2 ;(D)2x2x.x217.设f(x),则x0是f(x)的间断点,其类型是__________ __.x
三、解答题
1利用重要极限求下列函数极限
1xn1ann!x7(1)lim(二重),(2)设xn,求极限lim,(3)求极限limcosxx2,nnxx1x0nxn
cosx
1xx1解:limcosxxlim1(cosx1)x0x011cosx1cosx1xex0lime 1
22.利用等价无穷小的性质求下列极限:
《数学分析I》第2次习题课教案
sinaxx2ln13xxsinx1(1)lim;(2)lim,b0;(3)lim.x2x0x0x0sinxtanbxe1
3.利用连续函数求下列极限:
ex1ln1ax2(1)lim;(2)lim(提示:令tex1);(3)lim13tanxx0x0x0xxcot2x.4.利用函数极限的归结原则求数列极限
212(1)limnsin,(2)lim12.xnnnnn
sinax5.设fxxx[x]x0x0,应怎样选取数a,才能fx使处处连续?
x31(axb)1,求常数a,和b。6.已知lim(极限分析)xx21
四、证明题
1.若f(x)为周期函数,且limf(x)0,试证明f(x)0,x(,).x
2.利用函数极限的归结原则证明limcosx不存在.x
3.设f(x)~g(x)(xx0),证明:f(x)g(x)o(f(x)).4.设函数f在(0,)上满足方程f(2x)f(x),且limf(x)A,证明:f(x)A,x
x(0,).f(x)limf(x)f(1),证明:5.设函数f在(0,)上满足方程f(x2)f(x),且limx0x
f(x)f(1),x(0,).