习题课1—数列极限20095篇

时间:2019-05-13 09:02:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《习题课1—数列极限2009》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《习题课1—数列极限2009》。

第一篇:习题课1—数列极限2009

《数学分析I》第1次习题课教案

第一次习题课(数列极限)

一、内容提要

2n2121.数列极限定义,验证limn3n22n13.2.极限性质(唯一性、有界性、保号性、保不等式).3.极限四则运算.求limn1nn

2n(n),limn(1nn2)

4.收敛准则(迫敛准则、单调有界准则、柯西收敛准则).二、客观题

1.设f(x)1,x

1x1,则ff(x)___________.0,2.若数列{xx

n}与{yn}发散,问数列{xnyn},{xnyn},{n

y}是否一定发散?

n

3.若数列xn收敛,列yn发散,则数列xnyn是否存在?

4、若单调数列{an}含有一个收敛的子数列,则数列{an}必收敛().5、若数列{an}发散,则{an}必为无界数列().6.当()时,有lim(k

n1n)ne.三、计算题

1.一些重要结论:

lim(n1n

nn)e,limn(n1n)ne1,limnqn0,(|q|1),limna1,(a0),limnn21.2.计算下列极限

(1)limsinn

nn0(M).(2)lim

1n(2n1n2n2n2)2(求和法).(3)lim(1

nn21

2n2n

2n2n)(夹逼).(4)limn(113n1nn2),(4)limn(1n2).(5).设f(x)axa0,a1,求lim1

nn2lnf(1)f(2)f(n).1limnn1,《数学分析I》第1次习题课教案 xn1ann!(6)设xn,求极限.limnnnxn

四、证明题

1.已知limana,证明极限limn[nan]a.nn1

cos1cos2cosn2n,(n1,2,,)是收敛数列.2222..应用柯西收敛准则,证明an

3.设x1a0,xn112(xn),证明:数列{xn}收敛并求其极限(单调有界原理).2xn

n4.按数列极限的N定义证明limn22n210.anbnn1,2,,试证明数列{an},bn1anbn,25.给定两个正数a1与b1(a1b1),我们令an1

与{bn}的极限皆存在,并且limanlimbn.nn

6.设an0,limana0,证明limn1.nn

第二篇:数列极限例题

三、数列的极限

(1)n1}当n时的变化趋势.观察数列{1n问题:

当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:

(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定

11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义

如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为

limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:

N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:

a2axN2x2x1xN1ax3x

当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证

注意到xn1 nn任给0, 若要xn1, 只要

11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn

重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;

n(1)n11”的详细推理

(2)逻辑“取 N[], 则当nN时, 就有

n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得

1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就

n是成立

n(1)n111.xn1=

nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证

任给0(要求ε<1)若q0, 则limqlim00;

nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n

说明:当作公式利用:limq

n1, q1,不存在,q1.

第三篇:数列极限教案

数列的极限教案

授课人:###

一、教材分析

极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。

二、教学重点和难点

教学重点:数列极限概念的理解及数列极限N语言的刻画。

教学难点:数列极限概念的理解及数列极限N语言的刻画,简单数列的极限进行证明。

三、教学目标

1、通过学习数列以及数列极限的概念,明白极限的思想。

2、通过学习概念,发现不同学科知识的融会贯通,从哲学的量变到质变的思想的角度来看待数列极限概念。

四、授课过程

1、概念引入

例子一:(割圆术)刘徽的割圆术来计算圆的面积。

.........内接正六边形的面积为A1,内接正十二边形的面积为A2......内接正62n1形的面积为An.A1,A2,A3......An......圆的面积S.用圆的内接正六n边形来趋近,随着n的不断增加,内接正六n边形的面积不断

1接近圆的面积。

例子二:庄子曰“一尺之锤,日取其半,万世不竭”。

第一天的长度1第二天的剩余长度 第二天的剩余长度

第四天的剩余长度 8

.....第n天的剩余长度n1.......2

随着天数的增加,木杆剩余的长度越来越短,越来越接近0。

这里蕴含的就是极限的概念。

总结:极限是变量变化趋势结果的预测。例一中,内接正六n边形的边数不断增加,多边形的面积无限接近圆面积;例二中,随着天数的不断增加,木杆的剩余长度无限接近0.在介绍概念之前看几个具体的数列:

1111(1): 1,,......; 23nn

1n1111:1,,,......;(2)n2345

(3)n2:1,4,9,16,......;

(4)1:1,1,1,1,......,1,......; nn

我们接下来讨论一种数列xn,在它的变化过程中,当n趋近于时,xn不断接近于某一个常数a。如随着n的增大,(1),(2)中的数列越来越接近0;(3)

(4)中的数列却没有这样的特征。

此处“n趋近于时”,“xn无限接近于数a”主要强调的是“一个过程”和一种“接近”程度。

可是只凭定性的描述和观察很难做到准确无误,所以需要精确的,定量的数学语言来刻画数列的概念。本节课的重点就是将数列的这样一个特征用数学语言刻画出来,并引入数列极限的概念。

2、内容讲授

(定义板书)设xn是一个数列,a是实数。如果对于任意给定的数0,总存在一个正整数N,当nN时,都有xna,我们称a是数列x

n的极限,或者说数列xn收敛且收敛于数a。

写作:limxna或xnan。

n

如果数列没有极限,就说数列是发散的。

注意:(1)理解定义中的“任意给定”:是代表某一个正数,但是这个数在选取时是任意的,选定以后就是固定的。不等式xna是表示xn与a的接近程度,所以可以任意的小。

(2)N的选取是与任意给定的有关的。11以数列为例,欲若取,则存在N100,当nNxna; 100n

若取1,则存在N1000,当nN时,xna。1000

数列极限的N语言:

limx

nna0,N,nNxna.数列极限的几何解释:

3、例题讲解

n211。例题1用数列极限的定义证明limnnn

n21证明:设xn,因为 nn

n21212xn1nnnnn

0,欲使xn,只要22即n,n

2我们取N1,当nN时,

n2122.nnNn

n21所以lim1.nnn

2注:N的取法不是唯一的,在此题中,也可取N10等。

例题2 设xnC(C为常数),证明limxnC。n

证明:任给的0,对于一切正整数n,xnCCC0,所以limxnC。n

小结:用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.五、课后作业

第四篇:数列极限复习

数列极限复习题

姓名

242n1、lim=; n139(3)n

an22n1a2、若lim(2n)1,则=; nbn2b

1an3、如果lim()0,则实数a的取值范围是;n2a

n4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范围是n

___;

a5.已知无穷等比数列n的前n项和

穷等比数列各项的和是;

6、数列an满足a1Sn1a(nN*)n3,且a是常数,则此无1,且对任意的正整数m,n都有amnaman,则数列an的3所有项的和为;

7、无穷等比数列an的首项是某个自然数,公比为单位分数(即形如:数,m为正整数),若该数列的各项和为3,则a1a2;

8、无穷等比数列an的各项和为2,则a1的取值范围是

1的分m



9、无穷等比数列an中,为;

lim(a2a3...an)

n

=1,则a1的取值范围

cosnsinn

10、计算: lim,[0,]

ncosnsinn

222na2n111、若lim2n1,则实数a的取值范围是; 2n

12a

23n2n(1)n(3n2n)

12、若数列{an}的通项公式是an=,n=1,2,„,则

lim(a1a2an)__________;

n

1

1n2012n(n1)

13、若an,Sn为数列an的前n项和,求limSn____;

n

31n2013n1

214、等差数列an,bn的前n项和分别为Sn,Tn且

an

 nbn

Sn2n

,则Tn3n

1lim15、设数列an、bn都是公差不为0的等差数列,且lim

lim

b1b2b3n

na4n

an

3,则bn16、已知数

列为等差数列,且,则

a117、设等比数列{an}的公比为q,且lim1qn),则a1的取值范围是

n1q

2__________;

18、已知等比数列{an}的首项a11,公比为q(q0),前n项和为Sn,若

lim

Sn

11,则公比q的取值范围是.;

nSn19、已知数列{an}的各项均为正数,满足:对于所有nN*,有4Sn(an1)2,n

()其中Sn表示数列{an}的前n项和.则limnan

A.0B.1C.D.

220、下列命题正确的是 „„„„„„„„„„„„„„„„„„„„„„„„„()

(A)limanA, limbnB则lim

n

n

anA

(bn0,nN)

nbBn

(B)若数列{an}、{bn}的极限都不存在,则{anbn}的极限也不存在(C)若数列{an}、{anbn}的极限都存在,则{bn}的极限也存在(D)设Sna1a2an,若数列{an}的极限存在,则数列{Sn}的极限也存在21、用记号“○+”表示求两个实数a与b的算术平均数的运算, 即a○+b=已知数列{xn}满足x1=0,x2=1,xn=xn-1○+xn-2(n≥3),则limxn等于()

n

ab

.2A.2

3B.12

C.0D.122、连结ABC的各边中点得到一个新的A1B1C1,又A1B1C1的各边中点得到一个新的A2B2C2,如此无限继续下去,得到一系列三角形,A1B1C1,A2B2C2,A3B3C3,, 这一系列三角形趋向于一个点M。已知

A0,0,B3,0,C2,2,则点M的坐标是()

52522A、(,)B、(,1)C、(,1)D、(1,)

3333323、已知数列

lim

{an},{bn}

都是无穷等差数列,其中

a13,b12,b2是a2和a

3的等差中

an1111lim(...)nbn2,求极限a1b1a2b2anbn的值; n项,且

24、设正数数列

lga

lin

1n

an

为一等比数列,且a24,a416,求

lagn2n

2al2ng;

bnlgan,25、数列{an}是由正数组成的数列,其中c为正常数,数列bna1c,成等差数列且公差为lgc(1)求证an是等比数列;(2)an的前n项和为Sn,求lim26、已知f(x)logax(ao且a1),an

nSn

且2,f(a1),f(a2),f(a3),,f(an),2n1,(nN)成等差数列,(1)求数列an的通项公式;

(2)若数列an的前n项和为Sn,当a1时,求lim

Sn

nan

第五篇:习题课2—函数极限2009

《数学分析I》第2次习题课教案

第二次习题课(函数极限、无穷小比较)

一、内容提要

1.函数极限定义,验证limx12.x

32.极限性质(唯一性、局部有界性、局部保号性、保不等式).e3xe2x

3.极限四则运算.求lim.x0x

4.收敛准则(迫敛准则、柯西收敛准则、归结原则).5.无穷小与无穷大(无穷小比较、等价无穷小替换定理、渐近线的求法).6.重要极限与常用等价无穷小.二、客观题

1.当x0时,下列四个无穷小中,()是比其它三个更高阶的无穷小.为什么?

2(A)x2;(B)1cosx;(C)x1;(D)tanxsinx

2.已知limsinx(cosxb)5,则a(),b().x0exa

23.当x0 时,xsinx 是 x 的().(A)低阶无穷小;(B)高阶无穷小;(C)等价无穷小;(D)同阶无穷小但非等价无穷小.4.设f(x)lim3nx,则它的连续区间是().n1nx

25.当x→0时下列变量中与x是等价无穷小量的有[].(A)sinx;(B)ln(1x);(C)x2 ;(D)2x2x.x217.设f(x),则x0是f(x)的间断点,其类型是__________ __.x

三、解答题

1利用重要极限求下列函数极限

1xn1ann!x7(1)lim(二重),(2)设xn,求极限lim,(3)求极限limcosxx2,nnxx1x0nxn

cosx

1xx1解:limcosxxlim1(cosx1)x0x011cosx1cosx1xex0lime 1

22.利用等价无穷小的性质求下列极限:

《数学分析I》第2次习题课教案

sinaxx2ln13xxsinx1(1)lim;(2)lim,b0;(3)lim.x2x0x0x0sinxtanbxe1

3.利用连续函数求下列极限:

ex1ln1ax2(1)lim;(2)lim(提示:令tex1);(3)lim13tanxx0x0x0xxcot2x.4.利用函数极限的归结原则求数列极限

212(1)limnsin,(2)lim12.xnnnnn

sinax5.设fxxx[x]x0x0,应怎样选取数a,才能fx使处处连续?

x31(axb)1,求常数a,和b。6.已知lim(极限分析)xx21

四、证明题

1.若f(x)为周期函数,且limf(x)0,试证明f(x)0,x(,).x

2.利用函数极限的归结原则证明limcosx不存在.x

3.设f(x)~g(x)(xx0),证明:f(x)g(x)o(f(x)).4.设函数f在(0,)上满足方程f(2x)f(x),且limf(x)A,证明:f(x)A,x

x(0,).f(x)limf(x)f(1),证明:5.设函数f在(0,)上满足方程f(x2)f(x),且limx0x

f(x)f(1),x(0,).

下载习题课1—数列极限20095篇word格式文档
下载习题课1—数列极限20095篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数列极限的证明(★)

    例1 设数列xn满足0x1,xn1sinxnn1,2,。 (Ⅰ)证明limxn存在,并求该极限;nxn1xn(Ⅱ)计算lim。 nxn解 (Ⅰ)用归纳法证明xn单调下降且有下界, 由0x1,得0x2sinx1x1,设0xn,则0xn1sinxnxn,所以xn......

    数列、极限、数学归纳法·数学归纳法

    数列、极限、数学归纳法·数学归纳法·教案 教学目标 1.了解归纳法的意义,培养学生观察、归纳、发现的能力. 2.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作......

    数列、极限、数学归纳法专题

    数列专 题复习选题人:董越【考点梳理】 一、考试内容 1.数列,等差数列及其通项公式,等差数列前n项和公式。 2.等比数列及其通项公式,等比数列前n项和公式。 3.数列的极限及其四......

    作业2数列极限

    作业2数列极限1、用数列极限的N定义证明下列极限:4n241)lim2nnn证明:04n2442 nnn14n2取N1,当nN时,恒有24 nn44n24所以lim2nnn2)limnn1n0 证明:0n1n011n1n1n取N2,当nN时,恒有n1n0所以l......

    数列极限的证明

    例1 设数列xn满足0x1,xn1sinxnn1,2,。 (Ⅰ)证明limxn存在,并求该极限; n1xn1xn2(Ⅱ)计算lim。 nxn解 (Ⅰ)用归纳法证明xn单调下降且有下界, 由0x1,得 0x2sinx1x1, 设0xn,则 0xn1sinxnxn,......

    数列极限的证明

    数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会 |Xn+1-A|......

    数列极限和函数极限(最终版)

    数列极限和函数极限极限概念是数学分析中最重要的概念,如连续、导数、积分等都要用极限来定义,而且由极限出发产生的极限方法,是数学分析的最基本的方法.更好的理解极限思想,掌......

    数列极限的定义

    第十六教时 教材:数列极限的定义 目的:要求学生首先从实例(感性)去认识数列极限的含义,体验什么叫无限地“趋 近”,然后初步学会用N语言来说明数列的极限,从而使学生在学习数学中的......