Taylor公式的证明及应用

时间:2019-05-15 15:25:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《Taylor公式的证明及应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《Taylor公式的证明及应用》。

第一篇:Taylor公式的证明及应用

Taylor公式的证明及应用

数学与信息科学学院数学与应用数学专业

指导教师李文明

作者张彦莉

摘要:文章简要介绍了泰勒公式的证明方法及几个常见函数的展开式,针对泰

勒公式的应用讨论了九个问题,即应用泰勒公式求极限,证明不等式,判断级数的敛散性,证明根的唯一存在性,判断函数的极值,求初等幂级数展开式,进行近似计算,求高阶导数在某些点的数值求行列式的值.关键词: 泰勒公式;极限;不等式;级数;根的唯一存在性;极值;展开式;近似计算;行

列式.一、

第二篇:公式及证明

初中数学几何定理

1。同角(或等角)的余角相等。2。对顶角相等。3。三角形的一个外角等于和它不相邻的两个内角之和。4。在同一平面内垂直于同一条直线的两条直线是平行线。

5。同位角相等,两直线平行。6。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。7。直角三角形中,斜边上的中线等于斜边的一半。

8。在角平分线上的点到这个角的两边距离相等。及其逆定理。

9。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。

10。一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。

11。有三个角是直角的四边形、对角线相等的平行四边形是矩形。

12。菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。

13。正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。

14。在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。15。垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。16。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。

17。相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。

18.圆内接四边形的对角互补,并且任何一个外角等于它的内对角。

19。切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。

20。切线的性质定理①经过圆心垂直于切线的直线必经过切点。②圆的切线垂直于经过切点的半径。③经过切点垂直于切线的直线必经过圆心。

21。切线长定理 从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。

22。弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。

23。相交弦定理; 切割线定理; 割线定理;

初中数学几何一般证题途径:证明两线段相等

1.两全等三角形中对应边相等 2.同一三角形中等角对等边

3.等腰三角形顶角的平分线或底边的高平分底边

4.平行四边形的对边或对角线被交点分成的两段相等

5.直角三角形斜边的中点到三顶点距离相等

6.线段垂直平分线上任意一点到线段两段距离相等

7.角平分线上任一点到角的两边距离相等

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等

12.两圆的内(外)公切线的长相等 13.等于同一线段的两条线段相等

证明两个角相等

1.两全等三角形的对应角相等 2.同一三角形中等边对等角

3.等腰三角形中,底边上的中线(或高)平分顶角

4.两条平行线的同位角、内错角或平行四边形的对角相等

5.同角(或等角)的余角(或补角)相等 6.同圆(或等圆)中,等弦(或同弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角

8.相似三角形的对应角相等 9.圆的内接四边形的外角等于内对角

10.等于同一角的两个角相等

证明两直线平行

1.垂直于同一直线的各直线平行 2.同位角相等,内错角相等或同旁内角互补的两直线平行

3.平行四边形的对边平行 4.三角形的中位线平行于第三边

5.梯形的中位线平行于两底 6.平行于同一直线的两直线平行 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平等行于第三边

证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角

3.在一个三角形中,若有两个角互余,则第三个角是直角

4.邻补角的平分线互相垂直 5.一条直线垂直于平行线中的一条,则必垂直于另一条

6.两条直线相交成直角则两直线垂直

7.利用到一线段两端的距离相等的点在线段的垂直平分线上

8.利用勾股定理的逆定理 9.利用菱形的对角线互相垂直

10.在圆中平分弦(或弧)的直径垂直于弦 11.利用半圆上的圆周角是直角

证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段

3.延长短线段为其二倍,再证明它与较长的线段相等

4.取长线段的中点,再证其一半等于短线段

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)

证明角的和差倍分

1.与证明线段的和、差、倍、分思路相同 2.利用角平分线的定义

3.三角形的一个外角等于和它不相邻的两个内角的和

证明线段不等

1.同一三角形中,大角对大边 2.垂线段最短

3.三角形两边之和大于第三边,两边之差小于第三边

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大

5.同圆或等圆中,弧大弦大,弦心距小 6.全量大于它的任何一部分

证明两角的不等

1.同一三角形中,大边对大角 2.三角形的外角大于和它不相邻的任一内角

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大

4.同圆或等圆中,弧大则圆周角、圆心角大 5.全量大于它的任何一部分

证明比例式或等积式

1.利用相似三角形对应线段成比例 2.利用内外角平分线定理

3.平行线截线段成比例 4.直角三角形中的比例中项定理即射影定理

5.与圆有关的比例定理:相交弦定理、切割线定理及其推论

6.利用比利式或等积式化得

证明四点共圆

1.对角互补的四边形的顶点共圆 2.外角等于内对角的四边形内接于圆

3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)

4.同斜边的直角三角形的顶点共圆 5.到顶点距离相等的各点共圆

二、空间与图形

A:图形的认识:

1:点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

一个几何体:用一个平面去截一个图形,截出的面叫做截面。

3视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧,扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2:角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

3:相交线与平行线

角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角/补角相等。③对顶角相等。④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。

4:三角形

三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。②三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。③三角形三个内角的和等于180度。④三角形分锐角三角形/直角三角形/钝角三角形。⑤直角三角形的两个锐角互余。⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。⑩三角形的三条高所在的直线交于一点。

图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。全等三角形:①全等三角形的对应边/角相等。②条件:SSS/AAS/ASA/SAS/HL。勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。

5:四边形

平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。

平行四边形的判定条件:两条对角线互相平分的四边形/一组对边平行且相等的四边形/两组对边分别相等的四边形/定义。

菱形:①一组邻边相等的平行四边形是菱形。②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相等,四个角都是直角。③对角线相等的平行四边形是矩形。④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。

梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。②两条腰相等的梯形叫等腰梯形。③一条腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。

多边形:①N边形的内角和等于(N-2)180度。②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

平面图形的密铺:三角形,四边形和正六边形可以密铺。

中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

B:图形与变换:

1:图形的轴对称

轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

轴对称图形:①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。

轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。

2:图形的平移和旋转

平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。3:图形的相似

比:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=。。=M/N,那么A+C+。。+M/B+D+。。N=A/B。

黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。②相似多边形对应

边的比叫做相似比。

相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。②条件:AA/SSS/SAS。

相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。②相似多边形的周长比等于相似比,面积比等于相似比的平方。

图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。②位似图形上任意一对对应点到位似中心的距离之比等于位似比。

D:证明

定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。②对事情进行判断的句子叫做命题(分真命题与假命题)。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。

公理:①公认的真命题叫做公理。②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。③同位角相等,两直线平行,反之亦然;SAS/ASA/SSS,反之亦然;同旁内角互补,两直线;平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。

第三篇:三角函数公式及证明

三角函数公式及证明

(本文由hahacjh@qq.com 编辑整理 2013.5.3)

基本定义

1.任意角的三角函数值:

在此单位圆中,弧AB的长度等于;

B点的横坐标xcos,纵坐标ysin ;

(由 三角形OBC面积<弧形OAB的面积<三角形OMA的面积 可得:

sinatana(02))

2.正切:

tansincos

基本定理

1.勾股定理: sin2cos21 1.正弦定理:asinA2=2bsinB2=

csinC= 2R(R为三角形外接圆半径)

A2.余弦定理:a=b+c-2bccos3.诱导公试:

cosAbca2bc222

2k

sincostancot

奇变偶不变,符号看相线

4.正余弦和差公式: ①sin(②cos(

)sincoscossin)coscossinsin

推导结论

1.基本结论

(sincos)221sin21cos2

tan1

2.正切和差公式:

tan()sin()sincoscossin

cos()coscossinsintantan1tantan

3.二倍角公式(包含万能公式):

2sincos2tansin22sincos222sincos1tan2222

1tan21tan2cos2sin2cos2cossin2cos112sinsin2cos2tan2sin2cos22tan1tan2

sin221cos221cos22tan1tan22

cos

4.半角公式:(符号的选择由

2所在的象限确定)sin21cos21cos21cos1cos sin221cos21cos2 1cos 1cos2sin22 cos2 cos222cos22tan2sincossincos2coscossinsin21cossin222sin1cos2

22

1sin(cos2sin2)2cos2sin2

5.积化和差公式:

sincos121sin()sin()cossin12sin()sin()coscos2cos()cos() sinsin12cos()cos

6.和差化积公式:

①sin③cos sin2sin2cos22 ②sin ④cossin2cos22sin22 cos2cos2coscos2sinsin7.三角形面积公式

S⊿=aha=absinC=bcsinA=acsin=2abc4R2221111B

sinAsinBsinC=2R2 =asinBsinC2sinA2=bsinAsinC2sinB2=

csinAsinB2sinC2

=pr =p(pa)(pb)(pc)(海伦公式,证明见下文)(其中p 12(abc), r为三角形内切圆半径)定理结论的证明

1.勾股定理的证明:

本证明选自《几何原本》(欧几里得)第I卷 命题47.2.正弦定理的证明:

做三角形外接圆进行证明;需利用结论同弧所对的圆周角相等,及直径所对圆周角为直角;

同弧所对圆周角相等的证明:

本证明选自《几何原本》(欧几里得)第III卷 命题20.直径所对圆周角为直角的证明:

本证明选自《几何原本》(欧几里得)第III卷 命题31.3.余弦定理的证明:

本证明选自《几何原本》(欧几里得)第II卷 命题12,13.4.诱导公式的证明:

同理可证

sin(cos(3232)sin()cos(2)sin(2)cos)sin

2)cos(2本证明选自人教版高中数学教材.5.正余弦和差公式的证明:

sin()sin(())可得sin()的结论

本证明选自人教版高中数学教材.5.海伦公式的证明:

本证明选自 http://wenku.baidu.com/view/78e82de50975f46527d3e182.html

第四篇:发展党员公示及公式证明

渤海大学文理学院外语系

党总支党员发展

公示

根据本人申请、组织培养、经党支部委员会讨论通过,拟吸收同志为中共预备党员。

特此公示

公示对象基本情况与考察情况

外语系党总支

年月日

公 示 结 果

党总支于年月日至年月日对

_同志接收为中国共产党预备党员进行了公示,公示结果如下(请在相应栏前的方框内打“√”):、公示期内未有群众提出异议或不良反映。、公示期内接到群众人次提出异议或不良反映,经

查实,不影响发展。(材料另附)、公示期内接到群众人次提出异议或不良反映,经

查实,暂缓发展。(材料另附)

中共渤海大学文理学院

外语系总支委员会

年月日

第五篇:均值不等式公式总结及应用

均值不等式应用

a2b21.(1)若a,bR,则ab2ab(2)若a,bR,则ab

2ab**2.(1)若a,bR,则ab(2)若a,bR,则ab2ab 222(当且仅当a(当且仅当ab时取“=”)b时取“=”)

ab(当且仅当ab时取“=”(3)若a,bR,则ab)2*2

3.若x0,则x12(当且仅当x1时取“=”)x

1若x0,则x2(当且仅当x1时取“=”)x

若x0,则x12即x12或x1-2(当且仅当ab时取“=”)xxx

ab)2(当且仅当ab时取“=”ba4.若ab0,则

若ab0,则ababab)2即2或-2(当且仅当ab时取“=”bababa

ab2a2b25.若a,bR,则((当且仅当ab时取“=”))22

『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所

谓“积定和最小,和定积最大”.

(2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』 应用一:求最值

例1:求下列函数的值域

(1)y=3x 2+

12x1(2)y=x+2x

解:(1)y=3x 2+≥22x 2113x 2· 2=2x

1x·=2; x6∴值域为[6,+∞)1(2)当x>0时,y=x+≥2x

11当x<0时,y=x+= -(- x-)≤-2xx

∴值域为(-∞,-2]∪[2,+∞)

1x·=-2 x

解题技巧

技巧一:凑项

例已知x

54,求函数y4x

2

1的最大值。4x5

解:因4x50,所以首先要“调整”符号,又(4x2)

不是常数,所以对4x2要进行拆、凑项,4x

5511x,54x0,y4x254x3231 44x554x

当且仅当54x

,即x1时,上式等号成立,故当x1时,ymax1。

54x

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。技巧二:凑系数 例1.当解析:由

时,求知,yx(82x)的最大值。,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但

其和不是定值。注意到2x(82x)8为定值,故只需将yx(82x)凑上一个系数即可。

当,即x=2时取等号当x=2时,y

x(82x)的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。变式:设0

x,求函数y4x(32x)的最大值。

232x32x9解:∵0x∴32x0∴y4x(32x)22x(32x)2 222

当且仅当2x技巧三: 分离

32x,即x

33

0,时等号成立。42

x27x10

(x1)的值域。例3.求y

x

1解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。

当,即

时,y59(当且仅当x=1时取“=”号)。技巧四:换元

解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。

(t1)27(t1)+10t25t44y=t5

ttt

当,即t=时,y59(当t=2即x=1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为

A

B(A0,B0),g(x)恒正或恒负的形式,然后运用均值不等式来求最值。ymg(x)

例:求函数y

2的值域。

t(t

2),则y

1

t(t2)

t11

0,t1,但t解得t1不在区间2,,故等号不成立,考虑单调性。

tt15

因为yt在区间1,单调递增,所以在其子区间2,为单调递增函数,故y。

t2

因t

所以,所求函数的值域为

5,。2

练习.求下列函数的最小值,并求取得最小值时,x 的值.11x23x1,x(0,),x3(3)y2sinx,(x0)(2)y2x(1)y

sinxx3x

2.已知0条件求最值 1.若实数满足a

x

1,求函数y.;3.0x,求函数y

3.b2,则3a3b的最小值是.a

分析:“和”到“积”是一个缩小的过程,而且3解: 当3

a

3b定值,因此考虑利用均值定理求最小值,3a和3b都是正数,3a3b≥23a3b3ab6

3b时等号成立,由ab2及3a3b得ab1即当ab1时,3a3b的最小值是6.

11变式:若log4xlog4y2,求的最小值.并求x,y的值

xy

技巧六:整体代换

多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。2:已知x0,y错解:..

0,且1,求xy的最小值。

xy

1919x0,y0,且1,xy

xy12故 xymin12。xyxy

在19yxy,错因:解法中两次连用均值不等式,在x

xy19

xy

y9x,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步

骤,而且是检验转换是否有误的一种方法。

正解:x0,y

19y9x19

0,1,xyxy1061016

xyxyxy

当且仅当

19y9x

1,可得x4,y12时,xymin16。时,上式等号成立,又xyxy

变式:(1)若

x,yR且2xy1,求11的最小值

x

y

(2)已知a,b,x,技巧七

yR且ab

x

y

1,求x

y的最小值

已知x,y为正实数,且x 2y 2

=1,求x1+y 2 的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab≤

a 2+b 2。

同时还应化简1+y 2 中y2前面的系数为

12,x1+y 2 =x

1+y 2

2· =x·

y 2

下面将x,12

y 2

分别看成两个因式:

y 2

x 2+(12

y 2

+)222

x 2+=

y 21

+222

=即x

1+y 2 =2 ·x

y 2≤ 2

4技巧八:

已知a,b为正实数,2b+ab+a=30,求函数y=的最小值.ab

分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

-2 b 2+30b

法一:a=,ab=·b=

b+1b+1b+1由a>0得,0<b<15 令t=b+1,1<t<16,ab=

118

-2t 2+34t-31

=-2(t+

16)+34∵t+

16≥2

30-2b

30-2b

ttt

t

=8

∴ ab≤18∴ y≥当且仅当t=4,即b=3,a=6时,等号成立。ab∴ 30-ab≥22 ≤u≤3ab

法二:由已知得:30-ab=a+2b∵ a+2b≥2令u=

ab则u2+22 u-30≤0,-5

∴ab≤32,ab≤18,∴y≥

点评:①本题考查不等式

ab

(a,bR)的应用、不等式的解法及运算能力;②如何由已知不等式

2的范围,关键是寻找到

aba2b30出发求得ab(a,bR)

ab与ab之间的关系,由此想到不等式

ab

ab(a,bR),这样将已知条件转换为含ab的不等式,进而解得ab的范围.2

变式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。2.若直角三角形周长为1,求它的面积最大值。技巧

九、取平方

5、已知x,y为正实数,3x+2y=10,求函数W=

3x +

2y 的最值.解法一:若利用算术平均与平方平均之间的不等关系,a+b

a 2+b

2,本题很简单

3x +2y≤2(3x)2+(2y)2 =2 3x+2y =2

5解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。W>0,W2=3x+2y+2

∴ W≤=

3x ·

2y =10+2

3x ·

2y ≤10+(3x)2·(2y)2 =10+(3x+2y)=20

变式

: 求函数y

解析:注意到2x

1与5

2x的和为定值。

x)的最大值。

y2244(2x1)(5

2x)8

y0,所以0y

时取等号。故ymax 2

当且仅当2x1=52x,即x

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。

应用二:利用均值不等式证明不等式

1.已知

a,b,c为两两不相等的实数,求证:a2b2c2abbcca

111

1。求证:1118

abc

11abc,1aaa1)正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc 例6:已知a、b、cR,且abc

分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个“

2”连乘,又可由此变形入手。

解:a、b、cR,ab

c

1。

11ab

c1aaa。同理

1b,11

c

述三个不等式两边均为正,分别相乘,得

1111abc。当且仅当时取等号。11183abcabc

应用三:均值不等式与恒成立问题 例:已知x0,y

0且1,求使不等式xym恒成立的实数m的取值范围。

xy

19xy9x9y10y9x1,1.1 xykxkykkxky

解:令xyk,x0,y0,1

2。k16,m,16 kk

1ab

(lgalgb),Rlg(),则P,Q,R的大小关系是.22

应用四:均值定理在比较大小中的应用: 例:若a

b1,Palgb,Q

分析:∵ab1 ∴lga0,lgb0

Q

(lgalgb)lgalgbp 2

ab1Rlg()lgablgabQ∴R>Q>P。

下载Taylor公式的证明及应用word格式文档
下载Taylor公式的证明及应用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    狭义相对论公式及证明[精选五篇]

    狭义相对论公式及证明 单位符号单位符号 坐标:m(x, y, z) 力: NF(f) 时间:st(T)质量:kgm(M) 位移:mr动量:kg*m/s p(P) 速度:m/sv(u)能量: JE 加速度: m/s^2 a冲量:N*sI 长度:ml(L)动......

    狭义相对论公式及证明(幽灵蝶)

    狭义相对论公式及证明 单位符号单位符号 坐标:m(x,y,z) 力: NF(f) 时间:st(T)质量:kgm(M) 位移:mr动量:kg*m/s p(P) 速度:m/sv(u)能量: JE 加速度: m/s^2 a冲量:N*sI 长度:ml(L)动能......

    三角公式证明

    公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|......

    泰勒公式及其应用

    泰勒公式及其应用 数学学院 数学与应用数学专业 2009级 杨立 指导教师 吴春 摘要:泰勒公式以一种逼近的思想成为数学分析中的一个重要知识,在分析和研究数学问题中有着重要的......

    导数公式证明大全

    导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n证法一:(n为自然数) f'(x)=lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*......

    高中数学立体几何证明公式

    线线平行→线面平行 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个......

    海伦公式的证明

    与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC = (a^2+b^2-c^2......

    数列求和公式证明

    1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边数学归纳法可以证也可以如下做 比较有技巧性n^2=n(n+1)-n1^2+2^2+3^2+......+n^2=1*2-1+2*3-2+....+n(n+1)-n=1*2+2*......