第一篇:初二数学 一元一次不等式 导学案 试题 教案
初二数学导学案 编号 14-1 课题 一元一次不等式 主备人 班级 时间 课型 新授 审核 姓名 学习目标:
1、掌握不等式的基本性质.2、会解一元一次不等式(组).一、自学要求:自学 93-112 内容解答 114 页回顾与思考中提出的问题.二、学情反馈:
1、若 ab-1 B.2a>2b C.a-b<0 D.a-b>0
2、若不等式组 A、m≥3
2 x 7 5 x 2 x m
的解集是 x>3,那么 m 的取值范围是(D、m<3
)
B、m≤3
C、m=3
三、探究学习:(一)不等式基本性质的应用: 1.填空:若 a>b,则 :(1)a-7___b-7;(2)-a___-b;(3)9-a___9-b.2 2 2.由 m
(二)函数、方程(组)、不等式(组)的综合 例 1:若 x 3 +(2x-y-k)2=0,y 是非负数,求 k 的取值范围.一变:若 k >0,y 的取值范围如何呢? 例 2:在方程组
x y m 2 x y 6
中,已知 xy<0,求 m 的取值范围.
四、课堂小结: 通过本节课的学习你有什么收获?
五、自我检测:
1、某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在 3000 千克以上(含 3000 千克)的有两种销售方案.甲方 案:每千克 9 元,由基地送货上门;乙方案:每千克 8 元,由顾客自己租车运 回.已知该公司租车从基地到公司的运输费为 5000 元.(1)分别写出该公司两种购买方案的付款 y(元)与所购买水果量 x(千克)之间的函数关系式,并写出自变量 x 的取值范围.(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由.
教(学)后记:
第二篇:1.5一元一次不等式与一次函数导学案
不等关系的导学案
学习目标:
(1)通过具体问题进一步体会一次函数的变化规律与一元一次不等式解
集的联系。
(2)综合运用一次函数、方程、不等式解决实际问题。一.复习回顾:
1、已知函数y=-x+8,当x___________时,函数值y小于零;当x___________时,函数值y等于零;当x___________时,函数值y大于零。
2、已知一次函数y13x12与y2x3的图象的交点坐标是_________,当x _________时,y1<y2,当x___________时,y1>y2。
二.自主学习:
例1某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠。甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%.乙商场的优惠条件是:每台优惠20%。(1)分别写出两家商场的收费与所买电脑台数之间的关系式.(2)什么情况下到甲商场购买更优惠?
(3)什么情况下到乙商场购买更优惠?
(4)什么情况下两家商场的收费相同?
例2某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计
为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用?其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?
三.当堂检测:
1.某单位要制作一批宣传材料.甲公司提出每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费。(1)什么情况下选择甲公司比较合算?(2)什么情况下选择乙公司比较合算?(3)什么情况下两公司的收费相同?
2.某电信公司有甲乙两种手机收费业务。甲种业务规定月租费是25元,每分钟的通话费用是0.4元;乙种业务不收月租费,每分钟的通话费用是0.6元。(1)分别写出甲乙两种收费标准下每月应交费用y
元和通话时间x分钟
之间的关系式。
随笔
(2)选择哪种业务对顾客更合算?
第三篇:一元一次不等式教案
教学目标
1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.
2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.
3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.
教学重点?? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题
教学难点?? 审题,根据实际问题列出不等式.
例题?? 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??
解:设累计购物x元,根据题意得
(1)当0 < x≤50时,到甲、乙两商场购物花费一样;
(2)当50< x≤100时,到乙商场购物花费少;
(3)当x > 100时,到甲商场的花费为100+0.9(x-100),到乙商场的花费为50+0.95(x-50)则
50+0.95(x-50)> 100+0.9(x-100),解之得x >150
50+0.95(x-50)< 100+0.9(x-100),解之得x < 150
50+0.95(x-50)= 100+0.9(x-100),?? 解之得x = 150
答:当0 < x≤50时,到甲、乙两商场购物花费一样;
当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。
变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费。问:选择哪家公司较好?
解:设购买午餐x份,每份报价为“1”,根据题意得
0.9x > 100+0.8(x-100),解之得x >200
0.9x < 100+0.8(x-100),解之得x < 200
0.9x = 100+0.8(x-100),解之得x = 200
答:当x>200时,选乙公司较好;当0 < x <200时,选甲公司较好;当x=200时,两公司实际收费相同。
作业
1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种方案更合算?
2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人200元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队领导的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?
第四篇:一元一次不等式教案
一元一次不等式教学设计
教学目标: 1 掌握一元一次不等式的解法,能熟练的解一元一次不等式 在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。教学重点: 掌握解一元一次不等式的步骤. 教学难点: 必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.教学过程:
一、问题导入,提出目标
1导入:请同学们思考两个问题: 一是不等式的基本性质有哪些?
二是什么是一元一次方程?并举出两个例子。
解一元一次方程:1-2x =x + 3,目的是为了与解例1进行类比,找到它们的联系与区别。
2、出示学习目标,检验学生预习
(1)能说出一元一次不等式的定义。
(2)会解答一元一次不等式,并能把解集在数轴上表示出来。
二、指导自学,小组合作
请同学们根据导学提纲进行自学,先个人思考,后小组合作学习。(导学提纲内容如下)
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)3x-2.5≥12(2)x≤6.75(3)x<4(4)5-3x>14
什么叫做一元一次不等式。
2、(1)自己举出2或3个一元一次不等式的例子,小组交流。(2)下列不等式中,哪些是一元一次不等式? 3x+2>x–1 5x+3<0 +3<5x–1(4)x(x–1)<2x
3、通过自学例1:
解一元一次不等式,并将解集在数轴上表示出来:3-x < 2x + 6
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
4(x-1)+2> 3(x+2)-x(x-2)/ 2≥(7-x)/ 3
6、总结:解一元一次不等式的依据和解一元一次不等式的步骤。
三、互动交流,教师点拨
1、交流导学提纲中的1—6题。
学生易出错的问题和注意的事项:
(1)确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
(2)对于例1,让学生说明不等式3-x < 2x + 6的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
(3)不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨例2和例3,学生到黑板上板演。
(1)例2易出错的地方是:去括号时漏乘,移动的项没有变号。
(2)例3易出错的地方是:去分母时漏乘无分母(或分母为1)的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1
四、当堂训练,达标检测
巩固练习题目
当堂检测题
1.下列各式是一元一次不等式的是()A.21>1 B.2x>1 C.2x2≠1 D.2< xx1x+3>-5是一元一次不等式()21>-8不是一元一次不等式()x2.判断正误:(1)(2)x+2y≤0是一元一次不等式()(3)3.方程26-8x=0的解是______,不等式26-8x>0的解集是______,不等式26-8x<•0的解集是________.
4.如果a与12的差小于a的9倍与8的和,则a的取值范围是_______. 5.解下列不等式:
(1)(x-3)≥2(x-4)(2)
(3)(1-2x)>10-5(4x-3)(4)1<x
48x≥0 5x10 2
第五篇:一元一次不等式试题
10.(2012湖北随州4分)若不等式组xb<0
x+a>0的解集为2 A.-2,3B.2,-3C.3,-2D.-3,2【答案】A。 【考点】解一元一次不等式组 【分析】∵解不等式x-b<0得:x<b,解不等式x+a>0得:x>-a,∴不等式组的解集是:-a<x<b,∵不等式组xb<0 x+a>0解集为2<x<3,∴-a=2,b=3,即a=-2,b=3。故选A。 11.(2012湖北孝感3分)若关于x的一元一次不等式组 范围是【】 xa>012x>x2无解,则a的取值 A.a≥1B.a>1C.a≤-1D.a<- 1【答案】A。 【考点】解一元一次不等式组。 【分析】解出两个不等式,再根据“大大小小找不到”的原则解答即可: xa>0①,由①得:x>a,由②得:x<1。12x>x2② ∵不等式组无解,∴a≥1。故选A。 12.(2012湖北襄阳3分)若不等式组1+x>a 2x40有解,则a的取值范围是【】 A.a≤3B.a<3C.a<2D.a≤2 【答案】B。 【考点】解一元一次不等式组。 【分析】先求出不等式的解集,再不等式组有解根据“同大取大,同小取小,大小小大中间找,大大小小解不了(无解)”即可得到关于a的不等式,求出a的取值范围即可: 由1+x>a得,x>a﹣1;由2x40得,x≤2。 ∵此不等式组有解,∴a﹣1<2,解得a<3。故选B。 20.(2012四川凉山4分)设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】 A.cbaB.bcaC.cabD.bac【答案】A。 30.(2012山东淄博4分)若ab,则下列不等式不一定成立的是【】 (A)ambm (B)a(m21)b(m21)(C) a2 b 2(D)a2b2 x24x32的解集为x<2,则a的取值范9.(2012湖北鄂州3分)若关于x的不等式组 xa02 围是▲.12.(2012四川广安3分)不等式2x+9≥13.(2012四川达州3分)若关于x、y的二元一次方程组 2xy3k1x2y 2的解满足x+y>1,则k的取值范围是▲.3(x+2)的正整数解是14.(2012四川绵阳4分)如果关于x的不等式组: 3x-a02x-b0,的整数解仅有1,2,那么 适合这个不等式组的整数a,b组成的有序数对(a,b)共有▲个。18.(2012广东河源6分)解不等式组:解不等式组: x+3>02x1+33x x+3>0,2(x-1)+3≥3x.,并判断﹣ 1这两个数是否为该不等式组的解. 3.(2012年四川省德阳市,第22题)今年南方某地发生特大洪灾,政府为了尽快搭建板房 安置灾民,给某厂下达了生产A种板材48000㎡和B种板材24000㎡的任务.⑴如果该厂安排210人生产这两种材,每人每天能生产A种板材60㎡或B种板材40㎡,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务? ⑵某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知 建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示: 【解析】(1)设有x人 生产A种板材,则有(210-x)人生产B板材,根据题意列方程4800060x 2400040(210x) 即可求得结果. (2)设生产甲型板房m间,根据生产A种板材48000㎡和B种板材24000㎡列方程组 108m156(400m)48000 求出m的取值范围.再设400间板房能居住的人数为W, 61m51(400m)24000 W=12m+10(400-m),由一次函数在自变量的取值范围内,函数存在最值即可求出最值. 4.(2012浙江省温州市,23,12分)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各 地的运费如图所示。设安排x件产品运往A地。 若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值。 【解析】数量关系:①运往C地的件数是运往A地件数的2倍;件数和为200;②运往B地的件数不多于运往C地的件数;③总运费不超过4000元 【答案】解:(1)①根据信息填表: 2003x2x②由题意得,160056x4000 解得40x 4267 . ∵x为整数,∴x=40或41或42,∴有三种方案,分别为: (i)A地40件,B地80件,C地80件;(ii)A地41件,B地77件,C地82件;(iii)A地42件,B地74件,C地84件.(2)由题意得30x8n3x50x5800,整理得n7257x. ∵n3x0∴x72.5. 又∵x0,∴0x72.5且x为整数. ∵n随x的增大而减少,∴当x=72时,n有最小值为221. 【点评】不等式问题中要把握一些关键词:如“不多于” “不超过”. 10.(2012深圳市 21,8分)“ 生活方式。某家电商场计划用11.8万元购进节能型电 视机、洗衣机和空调共40台。三种家电的进价及售价如右表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的三倍,请问商场有哪几种进货方案?(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金购满1000元送50元家电消费券一张、多买多送”的活动,在(1)的条件下,若三种电器在活动期间全部售出,商家预计最多送出消费券多少张? 【解析】:第(1)问,首先,要读懂表格,其次,要用未知数表示三种家电的数量,设购进 电视机的数量为x台,则洗衣机的数量为x台,空调的数量为(402x)台; 再次,根据题目中的“计划用11.8万元购进节能型电视机、洗衣机和空调共40台”,有5000x2000x2400(402x)≤118000,“购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的三倍”有402x≤3x,联立求解即可;第(2)问,建立一次函数模型,求出最多的销售总额方案,却可求最多出送出消费券多少张。 【解答】:(1)解:设购进电视机的数量为x台,则洗衣机的数量为x台,空调的数量为 (402x)台,依题意: 402x≤3x 解之得:8≤x≤10 5000x2000x2400(402x)≤118000 由于x为正整数,故x8910,因此有三种方案: ① 电视机8台,洗衣机8台,空调24台; ② 电视机9台,洗衣机9台,空调22台; ③ 电视机10台,洗衣机10台,空调20台 (2)设售价总金额为y元,依题意有: y5500x2160x2700(402x)2260x108000 2260>0,故y随x的增大而增大 由于:8≤x≤10,当x10,y有最大值226010108000130600 由于满1000元才能送出一张消费券,故送出消费券的张数为:130000 130(张) 1000 答:最多送出送出消费券的张数为130张 13(河南省信阳市二中)(10分)2012年春节期间,内蒙遭遇强冷空气,某些地区温度降至零下40℃以下,对居民的生活造成严重影响.某火车客运站接到紧急通知,需将甲种救灾物资2230吨,乙种救灾物资1450吨运往灾区.火车客运站现组织了一列挂有A、B两种不同规格的货车厢70节运送这批救灾物资.已知一节A型货车厢可装35吨甲种救灾物资和15吨乙种救灾物资,运费为0.6万元;一节B型货车厢可装25吨甲种救灾物资和35吨乙种救灾物资,运费为0.9万元.设运送这批物资的总运费为ω万元,用A型货车厢的节数为x节.(1)用含x的代数式表示ω;(2)有几种运输方案; (3)采用哪种方案总运费最少,总运费最少是多少万元? 解:(1)ω=0.6x+(70-x)×0.9=63-0.3x. ………………………………2分 35x25(70x)2230,(2)根据题意,可得 15x35(70x)1450.解得48≤x≤50. ………………………………………………………5分∵x为正整数,∴x取48,49,50. ∴有三种运输方案.………………………………………………………………6分(3)x取48、49、50时,ω= 63-0.3x,且k=-0.3<0. ∴ω随x的增大而减少,故当x=50时ω最少.∴当A型货车厢为50节,B型货车厢为20节时,所需总运费最少. 最少总运费为ω=63-0.3×50=48(万元). …………………………………10分