第一篇:高代习题
1、在P2210中,令W{BP22|ABBA},其中A.32
(1)证明:W是P22的一个子空间;
(2)求W的维数及一组基。
2、设n阶实方阵A满足矩阵方程:A4A3E0.证明:B(2EA)T(2EA)2
是正定矩阵。
3、设n阶实方阵A是可逆的,试证明:A的逆矩阵A1与伴随矩阵A*都可表示为A的多项式。
4、已知1,2,3是线性空间V3的一组基,线性变换在该组基下的矩阵为:
122A212,221
且1123,212,323.(1)证明:1,2,3也是V3的一组基;
(2)求在基1,2,3下的矩阵。
321
5、设3阶方阵A222.(1)证明:A可对角化;(2)试求两个可逆
361
11,PPPPAPP矩阵P且,使得1212112AP2为对角形矩阵。
6、设3阶方阵A的三个特征值分别为0,1,-1,其对应的特征向量依次为:
012,X1,X4X1123,210
试求A100.
第二篇:高代提纲
(一)实数集与函数
1、实数:实数的概念;实数的性质;绝对值不等式。
2、函数:函数的概念;函数的定义域和值域;复合函数;反函数。
3、函数的几何特性:单调性;奇偶性;周期性。
要求:理解和掌握绝对值不等式的性质,会求解绝对值不等式;掌握函数的概念和表示方法,会求函数的定义域和值域,会证明具体函数的几何特性。
(二)数列极限
1、数列极限的概念(N定义)。
2、数列极限的性质:唯一性;有界性;保号性。
3、数列极限存在的条件:单调有界准则;两边夹法则。
要求:理解和掌握数列极限的概念,会使用N语言证明数列的极限;掌握数列极限的基本性质、运算法则以及数列极限的存在条件(单调有界原理和两边夹法则),并能运用它们求数列极限;了解无穷小量和无穷大量的概念性质和运算法则,会比较无穷小量与无穷大量的阶。(三)函数极限
1、函数极限的概念(定义、X定义);单侧极限的概念。
2、函数极限的性质:唯一性;局部有界性;局部保号性。
3、函数极限与数列极限的联系。
4、两个重要极限。
要求:理解和掌握函数极限的概念,会使用语言以及X语言证明函数的极限;掌握函数极限的基本性质、运算法则,会使用海涅归结原理证明函数极限不存在;掌握两个重要极限并能利用它们来求极限;了解单侧极限的概念以及求法。
(四)函数连续
1、函数连续的概念:一点连续的定义;区间连续的定义;单侧连续的定义;间断点的分类。
2、连续函数的性质:局部性质及运算;闭区间上连续函数的性质(最值性、有界性、介值性、一致连续性);复合函数的连续性;反函数的连续性。
3、初等函数的连续性。
要求:理解与掌握函数连续性、一致连续性的定义以及它们的区别和联系,会证明具体函数的连续以及一致连续性;理解与掌握函数间断点的分类;能正确叙述并简单应用闭区间上连续函数的性质;了解反函数、复合函数以及初等函数的连续性。
(五)实数系六大基本定理及应用
1、实数系六大基本定理:确界存在定理;单调有界定理;闭区间套定理;致密性定理;柯西收敛准则;有限覆盖定理。
2、闭区间上连续函数性质的证明:有界性定理的证明;最值性定理的证明;介值性定理的证明;一致连续性定理的证明。
要求:理解和掌握上、下确界的定义,会求具体数集的上、下确界;理解和掌握闭区间上连续函数性质及其证明;能正确叙述实数系六大基本定理的内容及其证明思想,会使用开覆盖以及二分法构造区间套进行简单证明。
(六)导数与微分
1、导数概念:导数的定义;单侧导数;导数的几何意义。
2、求导法则:初等函数的求导;反函数的求导;复合函数的求导;隐函数的求导;参数方程的求导;导数的运算(四则运算)。
3、微分:微分的定义;微分的运算法则;微分的应用。
4、高阶导数与高阶微分。
要求:能熟练地运用导数的运算性质和求导法则求具体函数的(高阶)导数和微分;理解和掌握可导与可微、可导与连续的概念及其相互关系;掌握左、右导数的概念以及分段函数求导方法,了解导函数的介值定理。
(七)微分学基本定理
1、中值定理:罗尔中值定理;拉格朗日中值定理;柯西中值定理。
2、泰勒公式。
要求:理解和掌握中值定理的内容、证明及其应用;了解泰勒公式及在近似计算中的应用,能够把某些函数按泰勒公式展开
(八)导数的应用
1、函数的单调性与极值。
2、函数凹凸性与拐点。
3、几种特殊类型的未定式极限与洛必达法则。
要求:理解和掌握函数的单调性和凹凸性,会使用这些性质求函数的极值点以及拐点;能根据函数的单调性、凹凸性、拐点、渐近线等进行作图;能熟练地运用洛必达法则求未定式的极限。
(九)不定积分
1、不定积分概念。
2、换元积分法与分部积分法。
3、有理函数的积分。
要求:理解和掌握原函数和不定积分概念以及它们的关系;熟记不定积分基本公式,掌握换元积分法、分部积分法,会求初等函数、有理函数、三角函数的不定积分。
(十)定积分
1、定积分的概念;定积分的几何意义。
2、定积分存在的条件:可积的必要条件和充要条件;达布上和与达布下和;可积函数类(连续函数,只有有限个间断点的有界函数,单调函数)。
3、定积分的性质:四则运算;绝对值性质;区间可加性;不等式性质;积分中值定理。
4、定积分的计算:变上限积分函数;牛顿-莱布尼兹公式;换元公式;分部积分公式。要求:理解和掌握定积分概念、可积的条件以及可积函数类;熟练掌握和运用牛顿-莱布尼兹公式,换元积分法,分部积分法求定积分。
(十一)定积分的应用
1、定积分的几何应用:微元法;求平面图形的面积;求平面曲线的弧长;求已知截面面积的立体或者旋转体的体积;求旋转曲面的面积。
2、定积分的物理应用:求质心;求功;求液体压力。
要求:理解和掌握“微元法”;掌握定积分的几何应用;了解定积分的物理应用。十二)数项级数
1、预备知识:上、下极限;无穷级数收敛、发散的概念;收敛级数的基本性质;柯西收敛原理。
2、正项级数:比较判别法;达朗贝尔判别法;柯西判别法;积分判别法。
3、任意项级数:绝对收敛与条件收敛的概念及其性质;交错级数与莱布尼兹判别法;
阿贝尔判别法与狄利克雷判别法。
要求:理解和掌握正项级数的收敛判别法以及交错级数的莱布尼兹判别法;掌握一般项级数的阿贝尔判别法与狄利克雷判别法;了解上、下极限的概念和性质以及绝对收敛和条件收敛的概念和性质。
(十三)反常积分
1、无穷限的反常积分:无穷限的反常积分的概念;无穷限的反常积分的敛散性判别法。
2、无界函数的反常积分:无界函数的反常积分的概念;无界函数的反常积分的敛散性判别法。
要求:理解和掌握反常积分的收敛、发散、绝对收敛、条件收敛的概念;掌握反常积分的柯西收敛准则,会判断某些反常积分的敛散性。
(十四)函数项级数
1、一致收敛的概念。
2、一致收敛的性质:连续性定理;可积性定理;可导性定理。
3、一致收敛的判别法;M-判别法;阿贝尔判别法;狄利克雷判别法。
要求:理解和掌握一致收敛的概念、性质及其证明;能够熟练地运用M-判别法判断一些函数项级数的一致收敛性。
(十五)幂级数
1、幂级数的概念以及幂级数的收敛半径、收敛区间、收敛域。
2、幂级数的性质。
3、函数展开成幂级数。
要求:理解和掌握幂级数的概念,会求幂级数的和函数以及它的收敛半径、收敛区间、收敛域;掌握幂级数的性质以及两种将函数展开成幂级数的方法,会把一些函数直接或者间接展开成幂级数。
十六)傅里叶级数
1、傅里叶级数:三角函数系的正交性;傅里叶系数。
2、以2为周期的函数的傅里叶级数。
3、以2L为周期的傅里叶级数。
4、收敛定理的证明。
5、傅里叶变换。
要求:理解和掌握三角函数系的正交性与傅里叶级数的概念;掌握傅里叶级数收敛性判别法;能将一些函数展开成傅里叶级数;了解收敛定理的证明以及傅里叶变换的概念和性质。十七)多元函数极限与连续
1、平面点集与多元函数的概念。
2、二元函数的二重极限、二次极限。
3、二元函数的连续性。
要求:理解和掌握二元函数的二重极限、二次极限的概念以及它们之间的关系,会计算一些简单的二元函数的二重极限和二次极限;掌握平面点集、聚点的概念;了解平面点集的几个基本定理以及闭区域上多元连续函数的性质。
(十八)多元函数的微分学
1、偏导数与全微分:偏导数与全微分的概念;可微与可偏导、可微与连续、可偏导与连续的关系。
2、复合函数求偏导数以及隐函数求偏导数。
3、空间曲线的切线与法平面以及空间曲面的切平面和法线。
4、方向导数与梯度。
5、多元函数的泰勒公式。
6、极值和条件极值
要求:理解和掌握偏导数、全微分、方向导数、梯度的概念及其计算;掌握多元函数可微、可偏导和连续之间的关系;会求空间曲线的切线与法平面以及空间曲面的切平面和法线;会求函数的极值、最值;了解多元泰勒公式。(十九)隐函数存在定理、函数相关
1、隐函数:隐函数存在定理;反函数存在定理;雅克比行列式。
2、函数相关。
要求:了解隐函数的概念及隐函数存在定理,会求隐函数的导数;了解函数行列式的性质以及函数相关。
(二十)含参变量积分以及反常积分
1、含参变量积分:积分与极限交换次序;积分与求导交换次序;两个积分号交换次序。
2、含参变量反常积分:含参变量反常积分的一致收敛性;一致收敛的判别法;欧拉积分、函数、函数。
要求:理解和掌握积分号下求导的方法;掌握函数、函数的性质及其相互关系;了解含参变量反常积分的一致收敛性以及一致收敛的判别法。
(二十一)重积分
1、重积分概念:重积分的概念;重积分的性质。
2、二重积分的计算:用直角坐标计算二重积分;用极坐标计算二重积分;用一般变换计算二重积分。
3、三重积分计算:用直角坐标计算三重积分;用柱面坐标计算三重积分;用球面坐标计算三重积分。
4、重积分应用:求物体的质心、转动惯量;求立体体积,曲面的面积;求引力。要求:理解和掌握二重、三重积分的各种积分方法和特点,会选择最合适的方法进行积分;掌握并合理运用重积分的对称性简化计算;了解柱面坐标和球面坐标积分元素的推导。(二十二)曲线积分与曲面积分
1、第一类曲线积分:第一类曲线积分的概念、性质与计算;第一类曲线积分的对称性。
2、第二类曲线积分:第二类曲线积分的概念、性质与计算;两类曲线积分的联系。
3、第一类曲面积分:第一类曲面积分的概念、性质与计算;第一类曲面积分的对称性。
4、第二类曲面积分:曲面的侧;第二类曲面积分的概念、性质与计算;两类曲面积分的联系。
5、格林公式:曲线积分与路径的无关的四种等价叙述。
6、高斯公式。
7、斯托克斯公式。
8、场论初步:梯度;散度;旋度。
要求:理解和掌握两类曲线积分与曲面积分的概念、性质与计算,会使用对称性简化第一类曲线以及曲面积分;熟练掌握格林公式、高斯公式的证明并能利用它们求一些曲线积分和曲面积分;了解两类曲线积分及曲面积分的区别和联系;了解斯托克斯公式和场论初步。
《高等代数》复习参考提纲
(一)多项式
数域,整除的概念与性质,最大公因式,因式分解,重因式,多项式函数,有理系数多项式,多元多项式,对称多项式。
(二)行列式
排列,n阶行列式的概念,n阶行列式的性质,行列式的计算,行列式按一行(列)展开,拉普拉斯(Lap lace)定理,克兰姆法则。
(三)线性方程组
消元法,矩阵,矩阵的秩,线性方程组的初等变换等概念及性质,线性方程组有解判别定理。n维向量的概念及运算;向量组的线性组合、线性表示、线性相关、线性无关等概念;向量组的线性相关性的判定;两个向量组的等价;向量组的极大无关组、秩的概念及性质;向量组的秩与矩阵的秩的关系。线性方程组解的结构。
(四)矩阵
矩阵的概念,矩阵的运算,矩阵乘积的行列式与秩,矩阵的逆,矩阵的分块,初等矩阵,分块矩阵的初等变换及应用。
(五)二次型
二次型的矩阵表示,标准形,唯一性,惯性定律,正定二次型。
(六)线性空间
线性空间的概念与性质,维数,基,坐标,基变换,坐标变换,子空间,子空间的和与交,子空间的直和,线性空间的同构。
(七)线性变换
线性变换的概念与性质,线性变换的运算,线性变换的矩阵,特征值与特征向量,矩阵相似对角矩阵的各种条件,线性变换的值域和核,不变子空间,Jordan标准形,最小多项式。
(八)-矩阵
-矩阵的标准形,行列式因子,不变因子,初等因子,矩阵相似的条件,矩阵的有理标准形。
(九)欧几里得空间
欧几里得空间的概念与性质,标准正交基,欧几里得空间的子空间与同构,正交变换与对称变换,Schimidt正交化方法,实对称矩阵的标准形,最小二乘法,酉空间。
(十)双线性函数
线性函数,对偶空间,双线性函数。
第三篇:高财习题
、标的资产是指在合同中规定的涉及交易范围的资产或是司法案件中涉及纠纷的需要明确的财产。如:企业在签定销售合同时,某项产品已完工入库,这可以说明“合同存在标的资产”;如果在签定合同时,这项产品还没有完工,就说明“合同不存在标的资产”。
2、标的资产包括动产和不动产,可以是现金、证券和房产等。
甲公司与乙公司签订合同,销售10件商品,合同价格为每件2000元,单位成本为2200元,如果10件商品已经存在,则甲公司应确认的预计负债为---
答案是0 因为合同的标的资产是存在的2007年8月甲公司与乙公司签订一份D商品销售合同,约定在2008年2月以每件0.3万元的价格向乙公司出售3000件D商品。违约金为总价款的20%。
2007年12月31日,甲公司库存D产品3000件,成本总额为1200万元。按目前市场价格计算市场价格总额为1400万元,假定甲公司销售D产品不发生销售费用
合同的标的资产存在 为什么答案确认的是预计负债呢??
dondg发表于2009-08-12 18:00:3
4如果合同是属于有标的资产的亏损合同,但有一个前提:可以违约,那么首先应考虑不执行合同的违约金额和执行合同的亏损金额大小,如果违约金额较小则确认预计负债;如果执行合同亏损较小则确认存货跌价准备,即如果选择了违约,此时根据违约损失确认相应的预计负债
在简单说,基本思路如下:
1、如果不存在标的资产,产生预计负债,而不会有存货跌价准备
2、如果存在标的资产,经过计算应该选择执行合同,确认产生存货跌价准备;如果选择不执行合同赔付违约金,则确认预计负债。
对此题而言,不交货,直接赔钱,损失=0.3×3000×20%=180,按合同交货,在损失=1200-0.3×3000=300,企业又不傻,不交货还能赚200(1400-1200),交货不但赚不了还得多赔300,当然选择不执行,而给违约金了。
第四篇:高代考研大纲[定稿]
《高等代数》复习参考提纲
课程考试内容
(一)多项式
数域,整除的概念与性质,最大公因式,因式分解,重因式,多项式函数,有理系数多项式,多元多项式,对称多项式。
(二)行列式
排列,n阶行列式的概念,n阶行列式的性质,行列式的计算,行列式按一行(列)展开,拉普拉斯(Lap lace)定理,克兰姆法则。
(三)线性方程组
消元法,矩阵,矩阵的秩,线性方程组的初等变换等概念及性质,线性方程组有解判别定理。n维向量的概念及运算;向量组的线性组合、线性表示、线性相关、线性无关等概念;向量组的线性相关性的判定;两个向量组的等价;向量组的极大无关组、秩的概念及性质;向量组的秩与矩阵的秩的关系。线性方程组解的结构。
(四)矩阵
矩阵的概念,矩阵的运算,矩阵乘积的行列式与秩,矩阵的逆,矩阵的分块,初等矩阵,分块矩阵的初等变换及应用。
(五)二次型
二次型的矩阵表示,标准形,唯一性,惯性定律,正定二次型。
(六)线性空间
线性空间的概念与性质,维数,基,坐标,基变换,坐标变换,子空间,子空间的和与交,子空间的直和,线性空间的同构。
(七)线性变换
线性变换的概念与性质,线性变换的运算,线性变换的矩阵,特征值与特征向量,矩阵相似对角矩阵的各种条件,线性变换的值域和核,不变子空间,Jordan标准形,最小多项式。
(八)-矩阵
-矩阵的标准形,行列式因子,不变因子,初等因子,矩阵相似的条件,矩阵的有理标准形。
(九)欧几里得空间
欧几里得空间的概念与性质,标准正交基,欧几里得空间的子空间与同构,正交变换与对称变换,Schimidt正交化方法,实对称矩阵的标准形,最小二乘法,酉空间。
(十)双线性函数
线性函数,对偶空间,双线性函数。
考试形式与试题结构
1、试卷分值:150分
2、考试时间:180分钟
3、考试形式:闭卷
4、题型结构:填空题,计算题,证明题。
参考书目
1、北京大学数学系几何与代数教研室代数小组编,《高等代数》(第三版),北京,高等教育出版社。
2、张禾瑞,郝鈵新,《高等代数》(第四版),北京,高等教育出版社。
3、李师正等,《高等代数解题方法与技巧》,北京,高等教育出版社。
第五篇:高代试题(下)
2008-2009 高等代数(II)期中试题
姓名班级学号
一、判断题(正确的结论打“√”,否则打“×”。10个小题,每小题1分,共10分)
1、()设A为n阶正定矩阵,则A1也是正定矩阵;2、(X)实二次型f(x1,,xn)的正、负惯性指数的和等于n;
3、(X)设是MZ到M'Z的映射,nZ,(n)|n|1,则是单射;4、()设V1,V2是线性空间V的两个子空间,则V1V2也是V的子空间;5、()在R3中,(x1,x2,x3)(2x1,x2,x2x3)是线性变换;
6、()设APnn,是A的特征值,则k(kP)是kA的特征值; 7、()在n维欧氏空间中,是正交变换的充要条件是:保持向量的长度不变; 8、()实对称矩阵的特征值一定是实数; 9、(X)同一个双线性函数在任何一组基下的度量矩阵都是相同的;
10、(X)L(V,P)的维数等于V的维数。
二、填空题(10个小题,每小题2分,共20分)
1、实二次型的矩阵都是矩阵; 2、如果实对称矩阵A正定,则它主对角线上的元素; 3、子空间V1,V2的和V1V2 4、如果向量空间V的维数是n,那么,V中任意n1个向量都是 线性相关; 5、线性空间V上的线性变换的零度指的是; 6、属于特征值0的特征向量有个; 7、在欧氏空间中,长度为0的向量有个; 8、标准正交基的度量矩阵是; 9、线性空间V上的双线性函数f(,)称为非退化的是指:;
10、线性空间V也可看成V*的线性函数空间。
三、计算题(3个小题,每小题10分,共30分)
1、设1(1,2,1,0),2(1,1,1,1);1(2,1,0,1),2(1,1,3,7),试求L(1,2)与L(1,2)交空间的基和维数。
2、已知线性变换在某一组基下的矩阵
663
A020
3126可以对角化,试写出相应的基变换的过度矩阵T,并验算T1AT。3、在R[x]4中定义内积为(f(x),g(x))
1
f(x)g(x)dx,求R[x]4的一组正交基。
四、证明题(4个小题,每小题10分,共40分)
1、设AC,AA',证明:存在BC,使AB'B。
2、把复数域C看成是实数域R上的线性空间,试用两种方法证明C与R2同构。
3、证明:在线性空间V中,如果线性变换以V中每一个非零向量作为它的特征向量,则是数乘变换。
4、证明:欧氏空间中的任意正交向量组都是线性无关的。
nn
nn
--