第一篇:2013中考数学几何考点详解之矩形
2013中考数学几何考点详解之矩形
1、矩形的概念
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)具有平行四边形的一切性质(2)矩形的四个角都是直角
(3)矩形的对角线相等(4)矩形是轴对称图形
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积S矩形=长×宽=ab
第二篇:2013中考数学几何考点详解之菱形
2013中考数学几何考点详解之菱形
1、菱形的概念
有一组邻边相等的平行四边形叫做菱形
2、菱形的性质
(1)具有平行四边形的一切性质(2)菱形的四条边相等
(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形
3、菱形的判定
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半
第三篇:2013中考数学几何考点详解之正方形
2013中考数学几何考点详解之正方形
1、正方形的概念
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)具有平行四边形、矩形、菱形的一切性质
(2)正方形的四个角都是直角,四条边都相等
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角
(4)正方形是轴对称图形,有4条对称轴
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定
(1)判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:
先证明它是平行四边形;
再证明它是菱形(或矩形);
最后证明它是矩形(或菱形)
4、正方形的面积设正方形边长为a,对角线长为b
第四篇:中考数学几何证明题
中考数学几何证明题
在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
第一个问我会,求第二个问。需要过程,快呀!
连接GC、BG
∵四边形ABCD为平行四边形,∠ABC=90°
∴四边形ABCD为矩形
∵AF平分∠BAD
∴∠DAF=∠BAF=45°
∵∠DCB=90°,DF∥AB
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰Rt△
∵G为EF中点
∴EG=CG=FG
∵△ABE为等腰Rt△,AB=DC
∴BE=DC
∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°
∴△BEG≌△DCG
∴BG=DG
∵CG⊥EF→∠DGC+∠DGB=90°
又∵∠DGC=∠BGE
∴∠BGE+∠DGB=90°
∴△DGB为等腰Rt△
∴∠BDG=45°
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
第五篇:中考数学经典几何证明题
2011年中考数学经典几何证明题
(一)1.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点M、N,试判断△OMN的形状,并加以证明;
(2)如图2,在四边形ABCD中,若ABCD,E、F分别是AD、BC的中点,联结FE并延长,分别与BA、CD的延长线交于点M、N,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图3,在△ABC中,ACAB,点D在AC上,ABCD,E、F分别是AD、BC的中点,联结FE并延长,与BA的延长线交于点M,若FEC45,判断点M与以AD为直径的圆的位置关系,并简要说明理由.B
A
ME
DB
(4)观察图
1、图
2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线
段,并满足(1)或(2)的结论,写出相关题设的条件和结论.3.如图,△ABC是等边三角形,F是AC的中点,D在线段BC上,连接DF,以DF为边在DF的右侧作等边△DFE,ED的延长线交AB于H,连接EC,则以下结论:①∠AHE+∠AFD=180°;②AF=在线段BC上(不与B,C重合)运动,其他条件不变时
BC;③当D
2BH
是定值;④当D在线段BC上(不与B,C重合)BD
BCEC
运动,其他条件不变时是定值;
DC
(1)其中正确的是-------------------;(2)对于(1)中的结论加以说明;
F
C
F
图 1图2图
32.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD
于点H,试证明CH=EF+EG;
图
1D
DC
(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC, 连结CL,点E是CL上任一点, EF⊥BD于
点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
F
H
BCD
E
4.在△ABC中,AC=BC,ACB90,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作FHFC,交直线AB于点H.判断FH与FC的数量关系并加以证明.(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
A
A
F
D F
D
E
C B
C
图
1E
图
2H
5.如图12,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.
证明.
8.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE
上,且AQ∥PC.(1)证明:PC=2AQ.
(2)当点F为BC的中点时,试比较△PFC和梯形APCQ面积的大小关系,并对你的结论加以证明.
6.如图。,BD是△ABC的内角平分线,CE是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G。
探究:线段FG的长与△ABC三边的关系,并加以证明。
说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。注意:选取①完成证明得10分;选取②完成证明得7分。①可画出将△ADF沿BD折叠后的图形; ②将CE变为△ABC的内角平分线。(如图2)
附加题:探究BD、CE满足什么条件时,线段FG的长与△ABC的周长存在一定的数量关系,并给出证明。
9.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB =∠DCE = 90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______和位置关系为______;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.CH
G
A图3 图1 图
27.在四边形ABCD中,对角线AC平分∠DAB.
(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.
(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予
10.已知△ABC中,AB=AC=3,∠BAC=90°,点D为BC上一点,把一个足够大的直角三角板的直角顶点放
在D处.
(1)如图①,若BD=CD,将三角板绕点D逆时针旋转,两条直角边分别交AB、AC于点E、点F,求出重叠部分AEDF的面积(直接写出结果).
(2)如图②,若BD=CD,将三角板绕点D逆时针旋转,使一条直角边交AB于点E、另一条直角边交AB的延长线于点F,设AE=x,重叠部分的面积为y,求出y与x的函数关系式,并写出自变量x的取值范围.(3)若BD=2CD,将三角板绕点D逆时针旋转,使一条直角边交AC于点F、另一条直角边交射线AB于点E.设CF=x(x>1),重叠部分的面积为y,求出y与x的函数关系式,并写出自变量x的取值范围.
2、如图,△ABC中,∠BAC=90°,AD⊥BC,DE⊥AB,DF⊥AC,若AB=kAC,试探究BE与CF的数量关系。
3、如图,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H。猜想线段EH与AC的数量关系,并证明你的猜想,若证明有困难,则可选k=1证明之。
4、在△ABC中,O是AC上一点,P、Q分别是AB、BC上一点,∠B=45°,∠POQ=135°,BC=kAB,OC=mAO。试说明OP与OQ是数量关系,选择条件:(1)m=1,(2)m=k=1。
2011年中考几何经典证明题
(二)1、如图,△ABC中,∠BAC=90°,AD⊥BC,E为CB延长线上一点,且∠EAB=∠BAD,设DC=kBD,试探究EC与EA的数量关系。
5、如图,△ABC中,AD是BC边上的中线,∠CAD=∠B,AC=kAB,E在AD延长线上,∠CED=∠ADB,探究AE与AD的关系。
6、如图,∠BAC=90°,AD⊥BC,DE⊥AB, AB=kAC,探究BE与AE是数量关系。