第一篇:有关不等式数学符号的起源
有关不等式数学符号的起源
数学符号的发明和使用比数字晚,但是数量多得多.现在常用的有200多个,初中数学书里就不下20多种.它们都有一段有趣的经历.
例如加号曾经有好几种,现在通用“+”.“+”是由拉丁文“et”(“和”的意思)演变而来的.十六世纪,意大利科学家塔尔塔利亚用意大利文“più”(加的意思)的第一个字母表示加,最后都变成了“+”.减号是从拉丁文“minus”(“减”的意思)演变来的,简写m,再省略掉字母,就成了“-”了.也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少.以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”等等.16世纪法国数学家维叶特用“=”表示两个量的差别.可是英国牛津大学数学、修辞学教授雷科德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来.1591年,法国数学家韦达在文中大量使用这个符号,才逐渐为人们接受.十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“∽”表示相似,用“≌”表示全等.
大于号“>”和小于号“<”,是1631年英国著名代数学家哈里奥特创用.至于“≯”“≮”、“≠”这三个符号的出现,是很晚很晚的事了.大括号“﹛﹜”和中括号“[]”是代数创始人之一韦达创造的.
第二篇:数学符号集锦
数学符号集锦
已知函数f(x)=1/2x2-(2a+2)x+(2a+1)lnx,对任意的a∈(3/2,5/2),已知o是锐角ΔABC的外接圆的圆心,且
已知存在实数a,满足对任意的实数b,直线y=-x+b都不是
已知直线tx+y+3=0与圆x2+y2=4相交于A、B两点,若
设函数f(x)=ax3+bx2+cx+d是奇函数,且当x=-√3/3时,f(x)取得极小值-2√3/9。(1)求函数f(x)的解析式;(2)求使得方程
已知函数f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0
设f(x)=x3+lg(x+√x2+1),则对任意实数a,b,已知函数f(x)=x(x-a)(x-b),点A(s,f(s)),点B(t,f(t)),(1)若a=0,b=3 已知函数f(x)=-x2+2ax,x≤1.f(x)=ax+1,x>1.若存在x1,x2∈R,x1≠x2
设函数f(x)=ex-1-x-ax2,若当x≧0时,f(x)≧0,求a的取值范围
若函数f(x)=ax2+20x+14(a>0)对任意实数t,在闭区间[t-1,t+1]上总存在两实数x1,x2,使得
设函数f(x)=x(1/2)x+1/x+1,A0为坐标原点,An为函数y=f(x)的图像上横坐标为n的点 在平面直角坐标系xoy中,设定点A(a,a),P是函数y=1/x(x>0)图像上一动点,若点P、A之间的最短距离
设等差数列{an}的前n项和为sn,且s4=4s2,a2n=2an+1,求数列{an}的通项公式
第三篇:数学符号
几何符号
≱
‖
∠
≲
≰
≡
≌
△ 代数符号
∝
∧
∨
~
∫
≠
≤
≥
≈
∞
∶
3运算符号
×
÷
√
±
4集合符号
∪
∩
∈
5特殊符号
∑
π(圆周率)
6推理符号
|a|
≱
∸
△
∠
∩
∪∈
←
↑
→
↓
↖
↗
↘
↙
&;
§
≳
≴
≵
≶
≷
≸
≹
≺
Γ
Δ
Θ
∧
Ξ
Ο
∏
α
β
γ
δ
ε
δ
ε
ζ
μ
ν
π
ξ
ζ
η
υ
θ
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈
∏
∑
∕
√
∝
∞
∟ ∠
∫
∮
≠
≡ ‖
∧ ≻
≼ ∑
Φ η
θ
χ
ψ ∣
‖
±
≥
≤
∨
Χ
Ψ
Ω ι
κ
λ
ω
∨
∩
∪
∧
∴
∵
∶
∷
∸
≈
≌
≈
≠
≡
≤
≥
≤
≥
≮
≯
⊕
≰
≱
⊿
≲
℃
指数0123:o123
上述符号所表示的意义和读法(中英文参照)
+
plus 加号;正号
-
minus 减号;负号
±
plus or minus 正负号
×
is multiplied by 乘号
÷
is divided by 除号
=
is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is approximately equal to 约等于
≈ is approximately equal to 约等于号
<
is less than 小于号
>
is more than 大于号
≤ is less than or equal to 小于或等于
≥ is more than or equal to 大于或等于
%
per cent 百分之…
∞ infinity 无限大号
√(square)root平方根
X squared X的平方
X cubed X的立方
∵ since;because 因为
∴ hence 所以
∠ angle 角
≲ semicircle 半圆
≰ circle 圆
○ circumference 圆周
△ triangle 三角形
≱ perpendicular to 垂直于
∪ intersection of 并,合集
∩ union of 交,通集
∫ the integral of …的积分
∑(sigma)summation of 总和
°
degree 度
′ minute 分
〃
second 秒
#
number …号
@ at 单价
第四篇:数学一般符号
数学符号一般有以下几种:
(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C),幂(aM),阶乘(!)等。
符号
意义
∞
无穷大
PI
圆周率
|x|
函数的绝对值
∪
集合并
∩
集合交
≥
大于等于
≤
小于等于
≡
恒等于或同余
ln(x)
以e为底的对数
lg(x)
以10为底的对数
floor(x)
上取整函数
ceil(x)
下取整函数
x mod y
求余数
{x}
小数部分 x助理 二级 11-9 10:49
------------------
(1)数量符号
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C),幂(aM),阶乘(!)等。
符号
意义
∞
无穷大
PI
圆周率
|x|
函数的绝对值
∪
集合并
∩
集合交
≥
大于等于
≤
小于等于
≡
恒等于或同余
ln(x)
以e为底的对数
lg(x)
以10为底的对数
floor(x)
上取整函数 ceil(x)
下取整函数
x mod y
求余数
{x}
小数部分 xfloor(x)∫f(x)δx
不定积分
∫[a:b]f(x)δx
a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k)对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2 lim f(x)(x->?)
求极限
f(z)
f关于z的m阶导函数 C(n:m)
组合数,n中取m P(n:m)
排列数
m|n
m整除n
m⊥n
m与n互质
a ∈ A
a属于集合A #A
集合A中的元素个数
第五篇:数学符号
1、几何符号
⊥(垂直)∥(平行)∠(角)⌒(弧)⊙(圆)≡; ≌(全等)△(三角形)
2、代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3、运算符号
如加号(+),减号(-),乘号(×或 ·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号
∪ ∩ ∈
5、特殊符号
∑ π(圆周率)
6、推理符号
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨
&;§
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε δ ε ζ η θ ι κ λ
μ ν π ξ ζ η υ θ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指数0123:o123
7、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”)。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号
如小括号“()”中括号“[]”,大括号“{}”横线“—”
10、性质符号
如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
11、省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n)),幂(A,Ac,Aq,x^n)等。
12、排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘,如5!=5×4×3×2×1=120
C-Combination-组合
A-Arrangement-排列
13、离散数学符号
├ 断定符(公式在L中可证)
╞ 满足符(公式在E上有效,公式在E上可满足)
┐ 命题的“非”运算
∧ 命题的“合取”(“与”)运算
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算(“与非门”)
↓ 命题的“或非”运算(“或非门”)
□ 模态词“必然”
◇ 模态词“可能”
θ 空集
∈ 属于(??不属于)
P(A)集合A的幂集
|A| 集合A的点数
R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”(或下面加 ≠)真包含 ∪ 集合的并运算 ∩ 集合的交运算-(~)集合的差运算 〡 限制
[X](右下角R)集合关于关系R的等价类 A/ R 集合A上关于R的商集 [a] 元素a 产生的循环群 I(i大写)环,理想 Z/(n)模n的同余类集合 r(R)关系 R的自反闭包 s(R)关系 的对称闭包
CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系 r 相容关系
R○S 关系 与关系 的复合 domf 函数 的定义域(前域)ranf 函数 的值域
f:X→Y f是X到Y的函数 GCD(x,y)x,y最大公约数 LCM(x,y)x,y最小公倍数
aH(Ha)H 关于a的左(右)陪集 Ker(f)同态映射f的核(或称 f同态核)[1,n] 1到n的整数集合 d(u,v)点u与点v间的距离 d(v)点v的度数
G=(V,E)点集为V,边集为E的图 W(G)图G的连通分支数 k(G)图G的点连通度 △(G)图G的最大点度 A(G)图G的邻接矩阵 P(G)图G的可达矩阵 M(G)图G的关联矩阵 C 复数集
N 自然数集(包含0在内)N* 正自然数集 P 素数集 Q 有理数集 R 实数集 Z 整数集 Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
上述符号所表示的意义和读法(中英文参照)
+ plus 加号;正号
- minus 减号;负号
± plus or minus 正负号
× is multiplied by 乘号
÷ is divided by 除号
= is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is approximately equal to 约等于
≈ is approximately equal to 约等于号
< is less than 小于号 > is more than 大于号
≤ is less than or equal to 小于或等于 ≥ is more than or equal to 大于或等于 % per cent 百分之… ∞ infinity 无限大号 √(square)root平方根 X squared X的平方 X cubed X的立方 ∵ since;because 因为 ∴ hence 所以 ∠ angle 角 ⌒ semicircle 半圆 ⊙ circle 圆
○ circumference 圆周 △ triangle 三角形
⊥ perpendicular to 垂直于 ∪ intersection of 并,合集 ∩ union of 交,通集 ∫ the integral of …的积分 ∑(sigma)summation of 总和 ° degree 度 ′
minute 分
〃 second 秒
# number …号
@ at 单价