第一篇:100测评网七年级数学方法点拨-1.2整式的加减
欢迎登录《100测评网》进行学习检测,有效提高学习成绩.●方法点拨
[例1]若A=3x3+2x2-1,B=1-x+x2,求A-2B的值,其中x=-
点拨:先列出式子,化简之后再代入数值求值.解:A-2B=(3x3+2x2-1)-2(1-x+x2)
=3x3+2x2-1-2+2x-2x2
=3x3+2x-3
当x=-1.21时 2
131)+2×(-)-3 22原式=3×(-
=3×(-
=-1)-1-3 83-4 8
3=-4 8
[例2]求1125x-29x+10y与x2+13x-5y的2倍的差.22
点拨:“„„与„„的差”是用前面整式减后面整式,(注意)被减数与减数.解:
=1125x-29x+10y-2(x2+13x-5y)22112x-29x+10y-5x2-26x+10y 2
1=x2-55x+20y
2本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.
第二篇:七年级数学上册《整式的加减》教案
整式的加减
教学过程:
(一)代数式:
1.本节重点共两部分,一是对给出的一个具体的代数式,能准确表达出它的数学意义,二是列代数式,即将基本数量关系的语言用代数式来表示。
本节是关于代数的初步知识,在复习中注意以下几点:
(1)代数式是什么,并注意和公式、等式区别开来。
(2)一个具体的代数式,能准确用语言表达其意义,并能把简单的与数量有关的词语化为代数式的形式。
(3)会用具体数值代替代数式中的字母,按其代数式指明的运算顺序进行计算。
(4)公式都是由代数式组成的。2.例题分析:
例1.说出下列各组代数式的意义有什么不同:
(1)2(a+b),2a+b,a+2b 2ab2b1222(2)a,(ab),()222 解:(1)2(a+b)是a与b的和的2倍。2a+b是a的2倍与b的和。a+2b是a与b的2倍的和。
22b22(2)a是a与b的一半的差。212(ab2)是a与b两数平方差的一半。2ab2()是a与b的差的一半的平方。注意:用语言表达一个代数式的意义,具体说法上没有统一的规定,只要能正确表达即可。比如2a+b,可以说是a的2倍与b的和,也可以说是2a与b的和。
例2.用代数式表示:
(1)甲数与乙数平方的和;
(2)甲、乙两数的平方差;
(3)甲数与乙数的差的平方。
解:设甲数为x,乙数为y(1)xy2(2)x2y2(3)(xy)2
例3.某校大礼堂第一排有座位x个,后面每排比前一排多2个座位,求第n排的座位数。若该礼堂一共有20排座位,且第一排的座位数也是20个,请您计算该礼堂共有多少座位?
分析:找到座位的规律:
第一排:x个第二排:x2个第三排:x4个 第四排:x6个
第五排:x8个第n排:x(n1)2个 解:由分析可得第n排的座位数:x+2(n-1)第一排有20个座位,共有20排,即a=20,n=20 所以,最后一排座位数:202(201)58(个)
求整个礼堂中的座位数即做加法: 202224……5658
(2058)(2256)……(3840)7810780
例4.某地出租汽车收费标准:起步价10元,可乘3千米,3千米到5千米,每千米1.8元,5千米以后,每千米是2.7元。若某人乘坐了x(x>5)千米的路程,请写出他应该支付的费用。若他支付的费用是19元,请你算出他乘坐的路程。
解:题目中给出他乘坐的路程是超过5千米的,因而前面5千米的费用是固定的,只要能算出后面的费用即可。
前面5km又分成两部分:3千米和2千米
前面3千米的费用是10元,紧接着的2千米是3.6元
所以前面5千米共花13.6元
5千米以后则就是每千米花2.7元,而后面的距离是(x-5)千米
因而总费用=13.6+(x-5)×2.7 已知支付的费用是19元,则
913.6(x5)2.7
1x7千米
注意:列代数式的关键是:一是抓住关键性的词语,如“增加”、“减少”等,或者是 2 规律性的内容,如“后面一排都比前面一排多2个座位”,二是要理清运算顺序,如“和的222积”与“积的和”运算顺序是不同的。如a+b与(a+b),前者是平方和,后者是和的平方。
11xxyy2 例5.若x=,y,求的值。
23xxyy211,y代入代数式中 231111211()262233 得:1111211()223326 解:将x19327918
19324918 注意:在求值过程中,代数式中的运算符号和顺序不能改变,在求值过程中,代数式中字母所代的值应是使代数式有意义的值,如速度、时间、体积、面积均为正值,而在形
aa如的式子中,b0,才能使有实际意义。bb
(二)整式的加减: 1.知识点简要回顾
(1)单项式指的是数与字母积的形式的代数式,即对字母来说只含有乘法运算,因aa1此的形式就不是单项式,但这种就是单项式,因为它的分母中不含有字母,只是b22它的系数。
注意:单独的一个数或单独的一个字母也叫单项式。
单项式中的数字因为叫做单项式的系数,而单项式中的所有字母的指数之和则称之为32单项式的次数。如-3xy中,-3是系数,其次数是5。
(2)多项式指的是几个单项式的和,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,一个多项式含有几项,就叫几项式。多项式里,次数最高
1232项的次数,就是这个多项式的次数。如2x+3x-1是二次三项式,x3x2x32是三次四项式。
(3)单项式、多项式、整式、代数式之间的联系和区别:
几个单项式的和组成多项式,单项式和多项式统称为整式。
整式是代数式,但代数式不一定是整式,判断一个代数式是否是整式,就主要看代数式的分母中是否有字母。
(4)多项式的排列方式:
降幂排列:一个多项式中,按照一个字母的指数从大到小的顺序排列,叫做按照这个字母的降幂排列。
升幂排列:一个多项式中,按照一个字母的指数从小到大的顺序排列,叫做按照这个字母的升幂排列。
例1.指出下列多项式的次数与项数:
2xy1(1)3
(2)a22a2bab2b2 解:(1)是二次二项式。
(2)是三次四项式。
例2.将3x3yy25x24xy3重新排列。
(1)按x降幂排列。
(2)按y升幂排列。
3232 解:(1)按x降幂排列:3xyx54xyy(2)按y升幂排列:5x23x3yy24xy3
(5)同类项与合并同类项:
同类项与合并同类项是整式中非常重要的两个概念。同类项是指字母相同,并且相同字母的指数也分别相同的项叫同类项。同类项的定义规定判断同类项的两条标准:一是字母相同,二是相同字母的指数也分别相同,二者缺一不可。
合并同类项是指把同类项合并成一项,合并同类项的方法是把同类项的系数相加,而字母和相同字母的指数都不变。
23.合并同类项:11x-5+9x+1-3x3x 例
解:11x-5+9x+1-3x23x3x217x
4在多项式中只有同类项可合并,不是同类项不可合并。有人对合并的结果不是一个单项
225式感到不习惯,如犯的错误有:2a+3b=5ab,5ab-3ab=2,2x+3x=5x等,产生错误的根源就是没有掌握合并同类项的要点:“系数相加”、“字母和字母的指数不变”。
例4.将a、b看成常数,x、y看成字母,合并同类项:
(1)2ax3by4ax3by2ax
(2)3ax2by22ax23by2
解:这里将a、b看成常数,因而可合并如下:
(1)2ax3by4ax3by2ax
(2a4a2a)x(3b3b)y
4ax6by
(2)3ax2by22ax23by
2(3a2a)x2(b3b)y2
ax22by2
nn1n2n2nn1 例5.合并同类项:x2xx2x3xx
解:这里的指数全都是含有字母,但观察同类项只要指数相同即可,不论是数字还是字母都可以。
xn2xn1xn22xn23xnxn1 (13)xn(21)xn1(12)xn2
2xn(1)xn1xn2
(6)整式的加减:
整式的加减实际上是对整式实施两个重要的恒等变形:一是合并同类项;另一个是添括号和去括号,整式的恒等变形是整个教学中恒等变形的基础。
整式的加减应该注意以下几个问题:一是观察,就是把同类项看清楚,当项数较多时,可作上记号;二是运用交换律时把项的符号“带走”;三是运用分配律时,符号要分配到每一项,不能漏项,同时要注意项的系数的符号;四是对运算结果要作处理,应该以某一字母作降幂或升幂排列。
例6.化简15a2[4a2(7a8a2)]
解:15a2[4a27a8a2] 15a24a27a8a2
27a27a 例7.已知:A=x2x5,Bx23x1,当x时,求3(3AB)的值。
解:3(3AB)9A3B 9(x2x5)3(x23x1)3x29x453x29x3
18x48 当 x时,18x4818486484233
例 8.一个多项式减去xxy得2xyy,求这个多项式。41212 解:(xxy)(2xyy)x2xyy2
例 9.化简:|x1||x1| 解: |x-1|=0时,x=1 |x+1|=0时,x=-1 所以需分如下三种情况:
(1)当x1时,原式1xx12x
(2)当1x1时,原式1xx12
(3)当x1时,原式x1x12x 说 明:一般aaa……a123n | xa||xa||xa|……|xa|的化简,分别令|xa|0(i1,2,3…n)123ni然后分别讨论在这n+1个部分上的符号,从而将绝对值去掉,达到化简的目的。
例10.若代数式(2x2axy6)(2bx23x5y1)的值与字母x的取值无关,求代 把 x的取值范围分成:xa,axa,……axa,xa这n1部分,112n1nn数式3(a22abb2)(4a2abb2)的值。分析:若代数式(2x2axy6)(2bx23x5y1)的值与x无关,若将x看作字母,则含字母x的项的系数应该为0,以此为据,求得后面代数式的值。
解:(2x2axy6)(2bx23x5y1)
(22b)x2(a3)x6y
5要使其值与x无关,则
2-2b=0 b=1 a+3=0 a=-3 3(a22abb2)(4a2abb2)
a27ab4b2
(3)27(3)1412
921
48 本课小结:
1.本节课主要回忆了一些基本的概念,如同类项等。2.合并同类项是本次课的重点内容,须强化掌握。3.其间有一些特殊的解题方法需同学们认真掌握。
【模拟试题】 一.填空:
11xy与xy的差是____________。22 2.多项式4x25x2与多项式3x22x7的差是____________。3.若xmy3与x2yn是同类项,则m=________,n=________。1.单项式二.化简、求值:
1.x32x2x42x35x4,其中x=2 2.(4x25x)(52x2)(3x25x6),其中x 3.2x{3y[4y(3xy)]},其中x2 31,y0.2 5三.计算:
1.已知Ax35x2,Bx211x6。求:(1)A+B(2)A-B(3)B-A。
2.求证:不论x、y取任何有理数,多项式
(x33x2y2xy24y31)(y3xy2x2y2x32)(x34x2y3xy25y38)的值恒等于一个常数,并求出这个常数。
【试题答案】 一.1.xy 2.x27x9
3.m2,n3
二.1.化简后:x32x26x,代入x2得值为4 2.化简后:x21,代入x23得值为149 3.化简后:x2y,代入x15,y0.2得值为0.2 三.计算
1.(1)x34x211x6
(2)x36x211x6
(3)x36x211x6 2.化简多项式
(x33x2y2xy24y31)(y3xy2x2y2x32)(x34x2y3xy25y38)得结果-5 因而可以肯定其值恒等于一个常数,且这个常数为-5
第三篇:七年级上册《整式的加减》教学设计
七年级上册《整式的加减》教学设计
七年级上册《整式的加减》教学设计
【教学目标】
1.理解同类项、合并同类项的概念。
2.掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。
3.感受其中的“数式通性”和类比的数学思想。
【教学重点】
理解同类项的概念;掌握合并同类项法则。
【教学难点】
正确运用法则及运算律合并同类项。
【教学过程】
一、知识链接
1.运用运算律计算下列各题。
①6×20+3×20= ②6×(-20)+3×(-20)=
2.口答。
8个人+5个人= 8只羊+5只羊=
8个人+5只羊=
[意图:①复习乘法分配律;②感受“同类”。操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]
二、探究新知
探究一:一只蜗牛在爬一根竖立的竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?
(1)请列式表示:,你能对上式进行化简计算吗?
(2)说说化简计算的依据。
[意图:联系生活情境,探究新知。操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]
探究二:根据以上式子的运算,化简下列式子。
①100t-252t ②3x2+2x2
②3ab2-4ab2 ④2m2n3-5m2n3
(1)上述各多项式的项有什么共同特点?
(2)上述多项式的运算有什么共同特点,有何规律?
[意图:让学生经历动手、观察、猜想、归纳的学习过程,从而探究出新知。操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]
三、例题精炼
例1.合并同类项。
4x2+2x+7+3x-8x2-2
例2.求多项式-x2+4x+5x2-3x-4x2+3的值,其中x=。
[意图:运用知识解决问题,突出重点。操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]
四、课堂小结
这节课你学到了哪些知识?
[意图:养成总结反思的好习惯。操作流程:交流→小组代表发言→师补充]
五、课堂检测(略)
[意图:诊断、反馈学生学习效果。操作流程:8分钟内独立完成(学案)→学生互评→师统计答题情况→重点讲评]
第四篇:七年级上 整式的加减教学设计
大岗中学七年级数学教学资料
第二章整式的加减
整式的加减
教学目的:
1,在复习去括号,添括号及合并同类项法则的基础上,进行整式的加减运算。2,使学生在掌握整式加减一般步骤,熟练地进行整式的加减运算。
重点与难点:
重点:整式的加减运算
难点:括号前面是“—”号,去括号时里面各项符号都改变。
教学过程: 做一做
初一某班上艺术课时,第一排坐了n名同学,从第二排起每一排都比前一排多1人,一共坐了四排,则一共有
____名同学出席公开课。
分析
已知第一排有n名同学,则第二、三、四排的人数分别为_______人,_______人,_______人.因而总人数为_______________________________________________(1)这个式子是属于什么运算?______________________________(2)你想通过什么途径将该式子化简?________________________
(3)结合已有的知识和经验,你能总结出整式加减的一般步骤吗?
概括
整式加减的一般步骤可以总结为:
(1)如果有括号,那么先去括号;(2)如果有同类项,再合并同类项.
课堂练习:
填空:
(1)3x-(-2x)=_________________________;(2)-2x2-3x2=___________________________;(3)-4xy―(―2xy)=____________________;(4)-4xy―(―2xy)+x2y=_______________;
例1
计算:(1)、(2x3y)(5x4y)
(2)、(8a7b)(4a5b)
大岗中学七年级数学教学资料
第二章整式的加减
例2
已知M=3x2-2xy+y2,N=2x2+xy-3y2,求:M-N;
例3 一种笔记本的单价是x元,圆珠笔的单价是y元,小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支。买这种笔记本和圆珠笔,小红和小明一共花了多少钱?
例4(1)化简求值:2x2y-3xy2+4x2y-5xy2,其中x=1,y=-1.
(2)求11312x2(xy2)(xy2)的值,其中,x=-2,y= 23233解:
注意:化简求值题型的书写格式为先将多项式化成最简单形式,再将字母的值代进去。
总结:
整式加减的一般步骤:
(1)如果有括号,那么先去括号;(2)如果有同类项,再合并同类项. 代数式求值的一般解题步骤:
(1)先化简;
(2)将各个字母的值代进去.拓展练习:
请写出两个多项式,使它们的和为10xy.
第五篇:【七年级数学下册】 1.2 整式的加减教案(二) 北师大版
1.2整式的加减
(二)一、教学任务分析
符号运算对于数学来说是必不可少的,基本运算技能是学生学习本章内容的一个重要目标。因此学生必须了解整式运算产生的背景,经历运算法则的探索过程,理解算理、掌握基本运算技能;同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:
1.经历用字母表示数量关系的过程,发展符号感。
2.经历探索整式加减运算法则的过程,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
3.会进行整式加减的运算,并能说明其中的算理。
4.让学生在探索整式加减运算法则的活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力。
5.在解决问题的过程中了解数学的价值,发展“用数学”的信心。
二、教学设计分析
本小节安排两课时,第一课时:先通过对具体问题的解决总结出整式加减运算的基本方法,然后解决单纯去括号、合并同类项即可完成的整式加减运算;第二课时:解决含有数与多项式相乘的整式加减运算,完备整式加减的运算法则。
第二课时
本节课设计了六个教学环节:课前热身——温故而知新、情境引入、整式的加减、练习提高、课堂小结、布置作业。
第一环节 课前热身 活动内容:温故而知新
本节课继续学习《整式的加减》,两个课时内容联系紧密,因此设计了以下的复习问题: 1.整式加减的一般步骤是什么?
2.计算:(3ab+212322ab)-(ab+ab)443.若A是五次多项式,B是三次多项式,则A+B一定是()
(A)五次整式(B)八次多项式(C)三次多项式(D)次数不能确定 4.乘法分配律的内容是什么? 活动目的:前两个问题是帮助学生复习巩固上节课所学知识,为后面环节的进行做好基础工作。通过第3题能进一步提高学生对整式加减运算算理的认识。第4题是为本节新知识做准备的。
第二环节 情境引入
活动内容:教材提供了一个探索规律的问题: 下面是用棋子摆成的“小屋子”。
摆第1个“小屋子”需要5枚棋子,摆第2个需要__枚棋子,摆第3个需要__枚棋子。
按照这样的方式继续摆下去。
⑴摆第10个这样的“小屋子”需要多少枚棋子? ⑵摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?与同伴进行交流。
活动目的:使学生进一步体会符号表示的意义,发展符号感;经历“由特例进行归纳、建立猜想、用符号表示、并给出证明”这一重要的数学探索过程,发展推理能力;体会整式加减运算的必要性,并运用整式加减运算来比较不同的算法。同时在运算时需要用到乘法分配律,因此可以为本节主要知识点的得出做好铺垫。
第三环节 整式的加减
活动内容:1.完备整式加减运算的法则。
⑴思考:由上面遇到的 5+6(n-1)=6n-1,你对整式加减运算的法则有什么补充吗? ⑵法则:进行整式的加减运算时,如果遇到数与多项式相乘,就要先按照乘法分配律的知识进行去括号(运算时注意系数的符号),然后再合并同类项。
2.运用法则规范解题。例1 计算:
323⑴ 7(p+p-p-1)-2(p+p)⑵-(123223+mn+m)-(-mn-m)33活动目的:第1个活动中的问题的目的是引导学生对整式加减运算的法则进行补充、完备,从而对整式的加减运算形成全面的认知,发展有条理的思考及语言表达能力。第2个活动是训练学生会按照法则规范地进行整式加减的运算,并能说明其中的算理。
第四环节 练习提高
活动内容:1.巩固练习: ⑴计算:
3232①(11x-2x)+2(x-x)2222②-3(ab+2b)+(3ab-14b)2⑵若(x+2)+│3-y│=0,求:3(x-7)-4(x+y)的值. 2.提高拓展练习: ⑴先化简,再求值:
5x-[3x-2(2x-3)-4x],其中 x=-
221 22
⑵已知 A=x+x+x+1, B=x+x, 计算:①A+2B;②2B-3A.⑶一个四边形的周长是48厘米,且第一条边长为a厘米,第二条边比第一条边的2倍长3厘米,第三条边长等于第一、第二两条边长的和。
①写出表示第四条边长的式子;
②当a=7cm时,还能得到四边形吗?这时的图形是什么形状? 活动目的:两组练习实际上是对两课时内容的一个综合。第一组练习是对本节的知识点进行巩固。第二组练习是训练学生灵活运用知识解决问题的能力。
第五环节 课堂小结
活动内容:鼓励学生结合两课时的学习谈自己的收获与感想(学生畅所欲言,教师给予鼓励),包括从中学到了哪些知识、数学思想和方法等。
活动目的:培养学生善于归纳、总结的习惯,发展有条理的思考及语言表达能力。第六环节 布置作业
完成课本习题1.3知识技能部分。教学设计反思 322 3