15.2.3 整数指数幂
学习目标:1.理解负整数指数幂的意义.2.掌握整数指数幂的运算性质.3.会用科学记数法表示小于1的数.重点:掌握整数指数幂的运算性质.难点:熟练进行整数指数幂及其相关的计算.一、知识链接
1.计算:(1)23×24=(2)(a2)3=(3)(-2a)2=
(4)(-2)6÷(-2)3=(5)105÷105=(6)=
2.正整数指数幂的运算性质有哪些?
(1)am·an=(m、n都是正整数);
(2)(am)n=(m、n都是正整数);
(3)(ab)n=(n是正整数);
(4)am ÷an=(a ≠0, m,n是正整数,m>n);
(5)=(n是正整数);
(6)当a ≠0时,a0=.3.如何用科学记数法表示一些绝对值较大的数?
利用10的正整数次幂,把一个绝对值大于10的数表示成 的形式,其中n是正整数,1 ≤|a|<10.n等于原数整数位数减去.一、要点探究
探究点1:负整数指数幂
问题1:am中指数m可以是负整数吗?如果可以,那么负整数指数幂am表示什么?
问题2:计算:a3 ÷a5=?(a≠0)
要点归纳:当n是正整数时,=(a≠0).即a-n(a≠0)是an的倒数.正整数指数幂的运算由此扩充到整数指数幂.典例精析
例1:若a=(-)-2,b=(-1)-1,c=(-)0,则a、b、c的大小关系是()
A.a>b=c B.a>c>b
C.c>a>b D.b>c>a
例2:计算:(1)(x3y-2)2;(2)x2y-2·(x-2y)3;(3)(3x2y-2)2÷(x-2y)3;(4)(3×10-5)3÷(3×10-6)2.例3:若(x-3)0-2(3x-6)-2有意义,则x的取值范围是()
A.x>3 B.x≠3且x≠2 C.x≠3或x≠2 D.x<2
例4:计算:-22+(-)-2+(2016-π)0-|2-|.探究点2:用科学记数法表示绝对值小于1的数
想一想:你还记得1纳米=10-9米,即1纳米=米吗?
算一算:10-2= ___________;10-4= ___________;10-8= ___________.议一议:指数与运算结果的0的个数有什么关系?
要点归纳:利用10的负整数次幂,把一个绝对值小于1的数表示成a×10-n的形式,其中n是正整数,1 ≤|a|<10.n等于原数第一个非零数字前所有零的个数(特别注意:包括小数点前面这个零).典例精析
例5:用小数表示下列各数:
(1)2×10-7;(2)3.14×10-5;(3)7.08×10-3;(4)2.17×10-1.二、课堂小结
当堂检测
1.填空:(-3)2·(-3)-2=();103×10-2=();a-2÷a3=();a3÷a-4=().2.计算:(1)0.1÷0.13;(2)(-5)2 008÷(-5)2 010;(3)100×10-1÷10-2;(4)x-2·x-3÷x2.3.计算:(1)(2×10-6)×(3.2×103);(2)(2×10-6)2 ÷(10-4)3.4.下列是用科学记数法表示的数,写出原来的数.(1)2×10-8(2)7.001×10-6
5.比较大小:
(1)3.01×10-4_______9.5×10-3
(2)3.01×10-4________3.10×10-4
6.用科学记数法把0.000 009 405表示成9.405×10n,那么n=________.