浙教版八年级上册数学《2.3 等腰三角形的性质定理第1课时 等腰三角形的性质定理1》教案

2022-09-01 16:20:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《浙教版八年级上册数学《2.3 等腰三角形的性质定理第1课时 等腰三角形的性质定理1》教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浙教版八年级上册数学《2.3 等腰三角形的性质定理第1课时 等腰三角形的性质定理1》教案》。

第2章

特殊三角形

2.3等腰三角形的性质定理

第1课时

等腰三角形的性质定理1

1.能够借助数学符号语言利用综合法证明等腰三角形的性质定理.2.经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力.3.启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系.探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法.明确推理证明的基本要求,如明确条件和结论,能否用数学语言正确表达等.提前请学生回忆并整理已经学过的8条基本事实中的5条:

1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

2.两条平行线被第三条直线所截,同位角相等;

3.两边夹角对应相等的两个三角形全等(SAS);

4.两角及其夹边对应相等的两个三角形全等(ASA);

5.三边对应相等的两个三角形全等(SSS).【教学说明】对以前所学知识进行复习巩固,为本节课的学习作准备.1.你能用所学知识证明吗?

已知:△ABC与△DEF,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A=∠D,∠B=∠E(已知),∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E),∴∠C=∠F(等量代换).又BC=EF(已知),∴△ABC≌△DEF(ASA).【归纳结论】

(1)两角相等且其中一组等角的对边相等的两个三角形全等(AAS);

(2)根据全等三角形的定义,我们可以得到:全等三角形的对应边相等,对应角相等;

2.等腰三角形有哪些性质?以前是如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?

【教学说明】让学生经历这些定理的活动验证和证明过程.具体操作中,可以让学生先独自折纸观察.探索并写出等腰三角形的性质,然后再以六人为小组进行交流,互相弥补不足.【归纳结论】

(1)等腰三角形的两个底角相等;(简称为“等边对等角”)

(2)等腰三角形顶角的平分线、底边中线、底边上的高三条线重合.例1在△ABC中,AB=AC,∠A=50°,求∠B、∠C的度数

分析:根据等腰三角形的性质:两底角相等,结合三角形的内角和等于

180°来计算.解:在△ABC中,AB=AC,∴∠B=∠C.(等边对等角)

∵∠A+∠B+∠C=180°,∠A=50°,∴∠B=∠C=65°.例2

已知在△ABC中,AB=AC,直线AE交BC于点D,O是AE上一动点但不与A重合,且OB=OC,试猜想AE与BC、BD与CD的关系,并说明你的猜想的理由.解:猜想:AE⊥BC,BD=CD.证明:∵AB=AC,OB=OC,AO=AO,∴△ABO≌△ACO(SSS).∴∠BAO=∠CAO.∴AE为∠BAC的平分线.∴AE⊥BC,BD=CD.例3

如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.

证明:(1)∵在△ADE与△CBF中,AD=CB,AE=CF,DE=BF,∴△ADE≌△CBF(SSS).∴∠D=∠B

(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∴∠AEO=∠CFO.∵在△AOE与△COF中,∠AEO=∠CFO,∴AE∥CF.例4

如图,在△ABC中,AB

=

AC,AD⊥BC,∠BAC

=

100°.求∠1、∠3、∠B的度数.解:∵在△ABC中,AB

=

AC,AD⊥BC,∴∠BAD=∠CAD,∴∠1=∠BAC=50°.又∵AD⊥BC,∴∠3=90°.在△ABC中,AB

=

AC,∴∠B=∠C=40°.【教学说明】在此练习过程中,一定要注意学生的书写格式,必要时教师要在黑板上板书过程.本节课应掌握:

1.学习了等腰三角形的性质,较好地运用其性质解决等腰三角形的问题.2.知道等腰三角形的顶角平分线、底边中线与底边上的高互相重合.

下载浙教版八年级上册数学《2.3 等腰三角形的性质定理第1课时 等腰三角形的性质定理1》教案word格式文档
下载浙教版八年级上册数学《2.3 等腰三角形的性质定理第1课时 等腰三角形的性质定理1》教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐