专题:不等式与函数
-
高一函数与不等式试题
例1(1)已知0<x<(2)求函数y=x+1,求函数y=x(1-3x)的最大值; 31的值域. xx43x232求函数y=的最小值. 2x1当x<3已知正数a,b,x,y满足a+b=10,38时,求函数y=x+的最大值. 22x3ab=1,x+y的最小值
-
复合函数不等式 2
复合函数不等式
一元二次不等式
16.E3、B6、B7[2013·安徽卷] 已知一元二次不等式f(x)0的解集为
A.{x|x-lg 2}
B.{x|-1 -
构造函数证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化
-
构造函数证明不等式
构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l
-
函数法证明不等式[大全]
函数法证明不等式已知函数f(x)=x-sinx,数列{an}满足0证明0证明an+1g(0)=0,故不等式①成立因此an+1a>b>0,求证:p19第9题:已知三角形三边的长是a,b,c,且m是正数,求证:p12例题2:已知
-
构造函数证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化
-
一道典型的抽象函数与抽象不等式问题
一道典型的抽象函数问题
已知函数f(x)的定义域为(2,2),函数g(x)f(x1)f(32x).
(1)求函数g(x)的定义域;
(2)若f(x)为奇函数,并且在定义域上单调递减,求不等式g(x)0的解集。
2x121515解 -
构造函数巧解不等式
构造函数巧解不等式湖南 黄爱民函数与方程,不等式等联系比较紧密,如果从方程,不等式等问题中所提供的信息得知其本质与函数有关,该题就可考虑运用构造函数的方法求解。构造函数,
-
构造函数处理不等式问题
构造函数处理不等式问题函数与方程,不等式等联系比较紧密,如果从方程,不等式等问题中所提供的信息得知其本质与函数有关,该题就可考虑运用构造函数的方法求解。构造函数,直接把握
-
构造函数,妙解不等式
构不等式与函数是高中数学最重要的两部分内容。把作为高中数学重要工具的不等式与作为高中数学主线的函数联合起来,这样资源的优化配置将使学习内容在函数思想的指导下得到重
-
函数导数不等式测试题五篇
昌乐二中 高三 数学自主检测题函数、导数、不等式综合检测题2009.03.20注意事项:1.本试题满分150分,考试时间为120分钟.2.使用答题卡时,必须使用0.5毫米的黑色墨水签字笔书写,作图
-
构造法证明函数不等式
构造法证明函数不等式 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点. 2、解题技巧是构造辅助函
-
构造函数法证明不等式
构造函数法证明不等式河北省 赵春祥不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等
-
函数方程不等式教学反思(推荐)
函数、方程、不等式教学反思
-----汪辉
本节课用五个环节组织教学。环节一是知识的回顾,这部分复习了函数、方程、不等式的基础知识,引入部分简单过渡,激发兴趣,为后面作铺垫。 -
数列----利用函数证明数列不等式
数列
1 已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。 (Ⅰ)求a1,a2的值; (Ⅱ)设a10,数列{lg大值。2已知数列{an}的前n项和Sn
(1)确定常数k,求an;
(2)求数列{3在等差数列an中 -
构造函数证明数列不等式
构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3
-
利用函数凹凸性质证明不等式
利用函数的凹凸性质证明不等式内蒙古包头市第一中学张巧霞摘要:本文主要利用函数的凹凸性来推导和证明几个不等式.首先介绍了凹凸函数的定义,描述了判定一个函数具有凹凸性质
-
巧用构造函数法证明不等式
构造函数法证明不等式一、构造分式函数,利用分式函数的单调性证明不等式【例1】证明不等式:|a||b||ab|1|a||b|≥1|ab|证明:构造函数f(x)=x1x (x≥0)则f(x)=x1x=1-11x在0,上单调