专题:垂直关系证明方法
-
《垂直关系证明》专题
《垂直关系》例1、如图1,在正方体ABCDA1B1C1D1中,M为CC1 的中点,AC交BD于点O,求证:AO平面MBD.1例2、如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC
-
证明垂直位置关系
第五课时学案垂直的证明方法命题预测从近几年的高考试题来看,线面垂直的判定与性质、面面垂直的判定与性质等是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高.客
-
高考复习专题---立体几何垂直关系证明
5.(2006年福建卷)如图,四面体ABCD中,O、E分别是BD、BC的中点,CACBCDBD2,ABAD (I)求证:AO平面BCD;BE4. ( 2006年湖南卷)如图4,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.(Ⅰ)
-
线面关系证明方法整理
证明线面平行的方法:(1)线面平行的判定定理——(2)面面平行的性质定理——若两平面平行,则一平面内的任一直线与另一面平行( 3 )定义法——线面无公共点aαbαa//b∥α证明面面平
-
Z证明直线垂直的方法
证明直线垂直的方法(一)相交线与平行线:①两条直线相交所成的四个角中,有一个角是直角,则这两条直线互相垂直。 ②两平行线中有一条垂直第三直线,则另一条也垂直第三直线 。(二)三角
-
证明两直线垂直的方法
证明两直线垂直的方法
1. 矩形四个内角
2. 三角形中的两角之和为90°,则另一角必为直角
3. 证明两直线中的一条是等腰三角形的底边,另一边是顶角平分线或底边上的中线
4. 勾股 -
传统方法证明平行与垂直
立体几何——证明平行与垂直证明平行Ⅰ、线面平行:证明线面平行就证明线平行于面内线。(数学语言)性质:直线a与平面α平行,过直线a的某一平面,若与平面α相交,则直线a就平行于这条
-
怎么证明垂直
怎么证明垂直1、利用勾股定理的逆定理证明勾股定理的逆定理提供了用计算方法证明两线垂直的方法,即证明三角形其中一个角等于,由于利用代数的方法,只要能计算出待证直角的对边
-
垂直关系小结
课题:垂直关系小结
一、学习目标:
1.掌握三种垂直关系的互相转化。 2.会求有关距离的问题。
二、重点:三种垂直关系的转化。
难点:如何求距离(点到面、线到面、面到面)。 三、复习 -
3.2.1用向量方法证明平行与垂直关系(小编整理)
§3.2.1用向量方法证明平行与垂直1、直线的方向向量直线的方向向量是指和这条直线或的向量,一条直线的方向向量有个。 2.平面的法向量直线l,取直线l的a,则向量a叫做平面的。 3
-
空间中的垂直和平行的证明方法(精选)
2.平面的基本性质公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.
-
如何证明面面垂直
如何证明面面垂直设p是三角形ABC所在平面外的一点,p到A,B,C三点的距离相等,角BAC为直角,求证:平面pCB垂直平面ABC过p作pQ⊥面ABC于Q,则Q为p在面ABC的投影,因为p到A,B,C的距离相等,所
-
立体几何垂直证明范文
立体几何专题----垂直证明学习内容:线面垂直面面垂直立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等
-
证明垂直习题
线面、面面垂直的判定及性质一、选择题1、已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线. ②一个平面内的已知直线必垂直于另一个平面的
-
怎么证明面面垂直
怎么证明面面垂直证明一个面上的一条线垂直另一个面;首先可以转化成 一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面 然后转化成 一条直线垂直于另一个平面内的
-
9-5用向量方法证明平行与垂直
2012-2013学年度第一学期数学理科一轮复习导学案编号:9-5班级:姓名:学习小组:组内评价:教师评价:例2.(线线垂直)如图所示,已知直三棱柱ABC—A1B1C1中,∠ACB=90°,∠BAC=30°.BC=1,AA1=,M是例5.(
-
1.初中证明直线垂直、平行的方法
证明两条直线垂直(直角)的常用方法 (一)相交线与平行线 1.定义法:两条直线相交成直角则两直线垂直。 2.两条平行线中有一条垂直第三直线,则另一条也垂直第三直线 。即:若a‖b,a⊥c,则
-
证明平行与垂直
§9.8 立体几何中的向量方法Ⅰ——证明平行与垂直(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1. 已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若aa分别与AB,AC垂直,则向量a为A.1