专题:等比数列性质教学设计
-
等比数列性质(本站推荐)
等比数列
1,在等比数列an中,已知a3a636,a4a718,an
12
,求n。
2,在1与100之间插入n个正数,使这n个数成等比数列,求插入的n个数的积。 3,在等比数列an中,若a22,a6162,求a10。
4,在等比 -
等比数列性质教学反思(精选5篇)
等比数列性质的教学反思 一. 对本节课的课堂教学的理解 (1) 知识与技能 对比等差数列建立等比数列模型,加强等比数列概念的理解和认识体验数学中类比的重要思想方法。 (2) 过程与
-
等比数列教学设计
《等比数列》教学设计(共2课时) 晋元高级中学杨方玉 一、教材分析:1、内容简析: 本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,
-
等比数列教学设计
等比数列教学设计 一、教学目标 1、知识与技能:通过教学使学生理解等比数列的概念,推导并掌握通项公式. 2、过程与方法:使学生进一步体会类比、归纳的思想,培养学生的观察、概
-
等比数列教学设计(汇编)
新蔡二高教学设计 年级:15级 学科:数学 主备课人:徐德功 日期 2017年12月6日 课题:高三数学一轮复习 等比数列 1.了解等比数列的通项公式an与前n项和公式Sn的关系. 三 维 1、知
-
等比数列教学设计
等比数列教学设计 上传: 毛怡珍更新时间:2012-5-10 20:11:43 等比数列(第一课时) 【课题】 等比数列(第一课时)(教案) 【教材】 北师大版《数学》必修5—1,1.3.1第一课时 北京
-
《等比数列》教学设计
《等比数列》教学设计 一、目的要求 1.理解等比数列的概念。 2.掌握等比数列的通项公式,并会根据它进行有关计算。 二、内容分析 1.等比数列与等差数列在内容上是完全平行的,包
-
(经典整理)等差、等比数列的性质
等差、等比数列的性质一:考试要求1、理解数列的概念、2、了解数列通项公式的意义3、了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项 二:知识归纳(一)主要
-
等差、等比数列性质类比
等差、等比数列知识点一、等差数列:1.等差数列的证明方法:1. 定义法:2.等差中项:对于数列则{an}为等差数列。 2.等差数列的通项公式:an,若2an1anan2ana1(n1)d------该公式整理后是
-
讲等比数列性质学案doc
2.4等比数列性质学习目标:1、理解等比数列的主要性质, 能推导证明有关性质; 2、能运用有关性质进行计算和证明. 【温故知新】1.已知数列{an}的前4项为2,6,18,54,则它的一个通项
-
等比数列的性质总结
等比数列性质1. 等比数列的定义:2. 通项公式: ana1qn1anan1qq0n2,且nN*,q称为公比a1qqABnna1q0,AB0,首项:a1;公比:q推广:anamqnm,从而得qnm3. 等比中项anam或qn(1)如果a,A,b成等比数列,
-
等比数列的性质教案
等比数列的性质(第一课时) 惠来一中方汉娇 一、【教学目标】 1.结合等比数列的性质,引导学生类比猜想等比数列的几个重要性质,并能初步应用等比数列性质解决相关的简单问题; 如:
-
等比数列求和教学设计
等比数列的前n项和 甘天威 一:教学背景 1.面向学生: 中学 学科: 数学 2.课时: 2个课时 3.学生课前准备: (1)预习书本内容 (2)收集等比数列求和相关实际问题。 二:教学课题 教养方面: 1
-
等比数列的性质练习题(推荐阅读)
考点1等比数列的通项与前n项和题型1已知等比数列的某些项,求某项【例1】已知an为等比数列,a22,a6162,则a10题型2 已知前n项和Sn及其某项,求项数.【例2】⑴已知Sn为等比数列an前n
-
等差数列与等比数列的性质
第24课 等差数列与等比数列的性质●考试目标主词填空1.等差数列的性质.①等差数列递增的充要条件是其公差大于0,②在有穷等差数列中,与首末两端距离相等的和相等.即a1+an=a2
-
等比数列的性质及应用教案
一、教学目标: 1.知识与技能:理解并掌握等比数列的性质并且能够初步应用。 2.过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、 概括等逻辑思
-
等比数列教学设计(五篇范例)
《等比数列》教学设计 第一课时 南郑中学 张小文 一、教材分析:1、内容简析: 本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与
-
类比探究等差数列和等比数列的性质
类比探究等差数列和等比数列的性质上海市桐柏高级中学李淑艳 马莉上海市普陀区教育学院刘达一、案例背景本课的教学内容是上海市高中课本《数学》(华东师范大学出版社)高中二