专题:等差等比性质练习
-
数列—等差、等比的证明
等差、等比数列的证明1.数列{a327
n}的前n项和为Sn2n2
n(nN).
(Ⅰ)证明:数列{an}是等差数列; (Ⅱ)若数列{bn}满足:anlog2bn,
证明:数列{bn}是等比数列.2.已知数列{a
n}的前n项和为Sn4an3(nN -
(经典整理)等差、等比数列的性质
等差、等比数列的性质一:考试要求1、理解数列的概念、2、了解数列通项公式的意义3、了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项 二:知识归纳(一)主要
-
等差、等比数列性质类比
等差、等比数列知识点一、等差数列:1.等差数列的证明方法:1. 定义法:2.等差中项:对于数列则{an}为等差数列。 2.等差数列的通项公式:an,若2an1anan2ana1(n1)d------该公式整理后是
-
等差、等比数列的性质及配套练习(优秀范文五篇)
◇等差数列与等比数列的性质◇等定 义 式:an 等差数列的概念 an1d(d为常数,n2,nN*),或an1and(nN*). 递 推 式:an1and(nN*).ab. 2等差中项:任何两个数a,b都有且仅有一个等差中项AA
-
边等比三角形的一些性质
龙源期刊网 http://.cn
边等比三角形的一些性质
作者:杨永德
来源:《文理导航》2013年第29期
【摘 要】本文主要证明了边等比三角形的一些性质。
【关键词】证明;性质
我们把三 -
数列等比性质分析2013福建
数列等比性质分析2013福建
9.D5[2013·福建卷] 已知等比数列{an}的公比为q,记bn=am(n-1)+1+am(n-1)+2+…+am(n
*
-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N),则以下结论一定正确的是 -
等差、等比数列子数列性质的探究
等差、等比数列的子数列探究【教学目标】经历等差数列与等比数列子数列的性质的研究过程,体验“归纳——猜想——论证”的数学发现的科学方法;体会从特殊到一般、类比等数学思
-
等差等比数列下标性质及应用(五篇范例)
等差等比数列下标性质及应用 戎国华 一. 教学目标: (一)知识与技能:等比等差数列的下标性质; 比数列的下标性质及其推导教学目标:掌握等差等方法(二)过程能力与方法学生的猜想能力能
-
数学教案-合比性质和等比性质例-教学教案
教研课 教案设计 教者:龙秀明 教学课题:合比性质和等比性质 教学目标:1、掌握合比性质的等比性质,并会用它们进行简单的比例变形2、会将合比性质、等比性质用于比例线段。3、提
-
证明等比等差数列
1.已知数列满足a1=1,an+1=2an+1(n∈N*) (1) 求证数列{an+1}是等比数列; (2) 求{an}的通项公式.2.已知数列{an}中,a135,an21an1(n2,nN),数列{bn}满足bn1(nN)an1; (1) 求证:数列(2) 求数列 {bn
-
等差、等比数列问题
等差等比数列问题
一、等差数列、等比数列基本数列问题
1.等差数列an,s636 ,sn6144,sn324,求n的值
1)an2an11;2)an2an1n1;3)an2an1n2n1; 4)an2an12n;5)an2an13n
1)sn2an1;2)sn22n1n1;3)sn2an1n2 -
平行线的判定和性质专题练习(模版)
七年级下册 第五章平行线的判定和性质专题练习1.下列命题: ①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角; ③同旁内角互补;④垂线段最短;⑤同角或等角的余角相
-
等腰三角形的性质练习(含答案)
等腰三角形的性质 一、基础能力平台 1.选择题: (1)等腰三角形的底角与相邻外角的关系是 A.底角大于相邻外角B.底角小于相邻外角 C.底角大于或等于相邻外角D.底角小于或等于相邻外角
-
《平行线的性质》证明题练习
《平行线的性质》证明题练习一、基础过关:1.如图1,a∥b,a、b被c所截,得到∠1=∠2的依据是A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线
-
等比等差数列高考题集[推荐阅读]
等差等比数列高考题集1.已知{an}为等差数列,a1a3a5105,a2a4a699,则a202.等比数列{an}中,已知a12,a416.(1)求{an}的通项公式;(2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{b
-
等差等比数列的证明
专题:等差(等比)数列的证明1.已知数列{a}中,anan15且2an12n1(n2且nN*).an1(Ⅰ)证明:数列2n为等差数列;(Ⅱ)求数列{an}的前n项和S. n2. 已知数列{a}中,an12且an1an2n30(n2且nN*).证明:数列an2
-
等差等比数列综合练习题
等差数列等比数列综合练习题 一.选择题 1. 已知an1an30,则数列an是 ( ) A. 递增数列 B. 递减数列 C. 常数列 D. 摆动数列 2.等比数列{an}中,首项a18,公比q,那么它的前5项的和S5的值
-
构造法证明等差
构造法证明等差、等比数列等差、等比数列的判定与证明【例2】已知数列{an}的前n项和为Sn,且满足:an-2SnSn-1=0(n≥2,n∈11N+,Sn≠0),a1=2,判断S与{an}是否为等差数列,并说明你的理由. n[