专题:导数中的不等式证明
-
导数证明不等式
导数证明不等式一、当x>1时,证明不等式x>ln(x+1)f(x)=x-ln(x+1)f'(x)=1-1/(x+1)=x/(x+1)x>1,所以f'(x)>0,增函数所以x>1,f(x)>f(1)=1-ln2>0f(x)>0所以x>0时,x>ln(x+1)二、导
-
应用导数证明不等式
应用导数证明不等式常泽武指导教师:任天胜(河西学院数学与统计学院 甘肃张掖 734000)摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等
-
利用导数证明不等式
利用导数证明不等式 例1.已知x>0,求证:x>ln(1+x) 分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0, 要证不等式变为:x>0时,f(x)>f(0), 这只要证明: f(x)在区间[0,)是增函数。 证明:令:f(x)=x
-
利用导数证明不等式
利用导数证明不等式没分都没人答埃。。觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个
-
导数在不等式证明中的应用
导数在不等式证明中的应用 引言 不等式的证明是数学学习中的难点,而导数在不等式的证明中起着关键的作用。不等式的证明是可以作为一个系列问题来看待,不等式的证明是数学学
-
导数在不等式证明中的应用
龙源期刊网 http://.cn
导数在不等式证明中的应用
作者:唐力 张欢
来源:《考试周刊》2013年第09期
摘要: 中学不等式证明,只能用原始的方法,很多证明需要较高技巧,且证明过程太难, -
谈利用导数证明不等式.
谈利用导数证明不等式 数学组邹黎华 在高考试题中,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维
-
导数证明不等式的几个方法
导数证明不等式的几个方法 1、直接利用题目所给函数证明(高考大题一般没有这么直接) 已知函数f(x)ln(x1)x,求证:当x1时,恒有 11ln(x1)x x1 如果f(a)是函数f(x)在区间上的最大(小)值
-
2014-2-30导数证明不等式答案
1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。2、解题技巧是构造辅助函数,把不等式的证明转化
-
利用导数证明不等式(全文5篇)
克维教育(82974566)中考、高考培训专家铸就孩子辉煌的未来函数与导数(三)核心考点五、利用导数证明不等式一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式f(x)g(
-
导数在证明不等式中的应用[5篇范文]
1.【作 者】 杨建辉;布春霞【刊 名】中学生数理化(学研版)【出版日期】2011【期 号】第11期【页 码】2-3【参考文献格式】杨建辉,布春霞.导数在证明不等式中的应用[J].中学
-
构造函数,结合导数证明不等式
构造函数,结合导数证明不等式 摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘
-
第五讲 利用导数证明不等式
利用导数证明不等式的两种通法 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法
-
导数与不等式证明(绝对精华)(合集5篇)
二轮专题 (十一) 导数与不等式证明 【学习目标】 1. 会利用导数证明不等式. 2. 掌握常用的证明方法. 【知识回顾】 一级排查:应知应会 1.利用导数证明不等式要考虑构造新的函数
-
用导数证明不等式(共5篇)
用导数证明不等式最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个区间的单调性,然后证明其最大值(或者是最小
-
构造函数,利用导数证明不等式
构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(
-
导数在不等式证明中的应用研究开题报告
南 昌 工 程 学 院题目导数在不等式证明中的应用研究学 生 姓 名张积磊班级09信息与计算科学学号指 导 教 师谢 杰 华日期2012年12月20日南 昌 工 程 学 院 教 务 处 订 制3
-
导数在不等式中的应用范文合集
指导教师:杨晓静
摘要:本文探讨了利用拉格朗日中值定理,函数的单调性,极值,幂级数展开式,凹凸性等进行不等式证明的具体方法,给出了各种方法的适用范围和证明步骤,总结了应用各种方