专题:大学中常用不等式
-
大学中常用的不等式
大学中常用不等式,放缩技巧 一: 一些重要恒等式 ⅰ:12+22+…+n2=n(n+1)(2n+1)/6 ⅱ: 13+23+…+n3=(1+2+…+n)2 Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sina ⅳ: e=2+1/2!+1/3!+…
-
大学数学中不等式的证明方法
龙源期刊网 http://.cn
大学数学中不等式的证明方法
作者:吴莹
来源:《学园》2013年第01期
【摘 要】不等式在科学研究中的地位很重要,但对不等式的证明有些同学无从下手,用什么 -
考研数学中的不等式证明(范文大全)
考研数学中的不等式证明陈玉发郑州职业技术学院基础教育处450121摘要:在研究生入学考试中,中值定理是一项必考的内容,几乎每年都有与中值定理相关的证明题.不等式的证明就是其中
-
导数在不等式中的应用范文合集
指导教师:杨晓静
摘要:本文探讨了利用拉格朗日中值定理,函数的单调性,极值,幂级数展开式,凹凸性等进行不等式证明的具体方法,给出了各种方法的适用范围和证明步骤,总结了应用各种方 -
高等数学中不等式的证明方法
高等数学中不等式的证明方法摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,
-
数学归纳法中不等式类解法
数学归纳法中不等式类解法 数学归纳法的思想比较特殊,原理是用类似于“多骨诺米牌效应”的方法,从n=1,n=2推到所可以达到的终点,从而推出式子的正确性。也正是如此,数学归纳法在
-
青年干部成长中的三个不等式
青年干部成长中的三个不等式
章景海
青年干部的成长要靠组织培养,也离不开自身的努力。青年干部加强自我培养,必须主动解开成长中的三个不等式,让自己尽快崭露头角、脱颖而出。 -
信息论中有关信源熵的不等式(5篇)
论文题目: 信息论中有关各种熵之间关系的证明 学院:数学科学学院 专业:信息与计算科学 姓名:周艳君 学号:20071115158 信息论中有关各种熵之间
-
导数在不等式证明中的应用
导数在不等式证明中的应用 引言 不等式的证明是数学学习中的难点,而导数在不等式的证明中起着关键的作用。不等式的证明是可以作为一个系列问题来看待,不等式的证明是数学学
-
高等数学中几个常见不等式及其应用(共5篇)
本科毕业论文(设计) 题 目:高等数学中几个常见不等式及其应用 学 生: 学号: 学 院: 专业: 入学时间: 年 月 日 指导教师: 职称: 完成日期: 年 0 月 日 1 高等数学中几个常见不等式及其
-
论文数学分析中证明不等式的若干方法
数学分析中证明不等式的若干方法 耿杰 (安徽师范大学数学与应用数学专业0707046) 摘要:本文主要应用数学分析中的单调性,微分中值定理,Taylor公式,凸函数的定义,极值,极限以及积分等
-
导数在不等式证明中的应用
龙源期刊网 http://.cn
导数在不等式证明中的应用
作者:唐力 张欢
来源:《考试周刊》2013年第09期
摘要: 中学不等式证明,只能用原始的方法,很多证明需要较高技巧,且证明过程太难, -
凸函数在证明不等式中的运用
凸函数在证明不等式中的运用摘要:凸性是一种重要的几何性质,凸函数是一种性质特殊的函数.凸集和凸函数在泛函分析,最优化理论,数理经济学等领域都有着广泛的应用.凸函数也是高
-
立体几何中不等式问题的证明方法
例谈立体几何中不等式问题的证明方法立体几何中的不等式问题具有很强的综合性,解决这类问题既要有较强的空间想象能力,又要有严密的逻辑思维能力,因此有一定的难度.下面我们介绍
-
不等式知识点整理
不等式知识点整理一、不等关系:1.实数的大小顺序与运算性质之间的关系:abab0;abab0;abab0.2.不等式的性质:(1)abba(自反性)(2)ab,bcac(传递性)(3)abacbc(可加性)(4)ab,c0acbc;ab,c0acbc(可乘性)(5)ab,c
-
不等式总结
不等式总结一、不等式的性质1.(不等式建立的基础)两个实数a与b之间的大小关系 (1)a-b>0a>b;(2)a-b=0a=b;(3)a-b<0a<b.(4)若 a、bR,则(5)(6)a>1a>b;ba=1a=b;ba<1a<b.b2.不等式的性质(1)a>bb<a(对称性)
-
不等式基础知识汇总
不等式基础知识一、不等式的概念1.不等式的定义不等式:用不等号连接两个解析式所得的式子,叫不等式.不等式组:含有相同未知数的几个不等式组成的式子,叫不等式组.2.不等式的分类(1)按
-
不等式知识点
不等式
一.知识点:
1.不等式的性质:
2.不等式的解法:
(一) 整式不等式的解法;(二)分式不等式的解法;(三)指对不等式的解法; 重点:含参二次不等式的解法;
3.不等式的证明:(1)作差变形;(2)分析法
4.均值