专题:构造法求数列题目
-
构造函数法证特殊数列不等式
数列不等式求证题目1:求证1111111+1++…+ln(1n)1++++…+题目2:求证题目3:求证234n1234n2n(n1)ln2ln3ln4lnn ln2ln3ln4lnn234n1n构造函数法证特殊数列不等式题目1:求证12111111+1
-
构造函数证明数列不等式
构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3
-
构造函数法
函数与方程数学思想方法是新课标要求的一种重要的数学思想方法,构造函数法便是其中的一种。
高等数学中两个重要极限
1.limsinx1 x0x
11x2.lim(1)e(变形lim(1x)xe) x0xx
由以上两 -
巧用逆向构造法 妙解数列型问题(大全五篇)
龙源期刊网 http://.cn
巧用逆向构造法 妙解数列型问题
作者:翟美华
来源:《理科考试研究·高中》2013年第01期
对于以上两例,常规方法是用数学归纳法.而本文采用逆向思维,由右 -
构造函数证明数列不等式答案
构造函数证明数列不等式答案例1.求证:ln22ln33ln44ln33nn3n5n66(nN).*解析:先构造函数有lnxx1lnx11,从而xxln22ln33ln44ln33nn31(n121313n)因为121313n1123111111111nnn21345
-
数列基础题目训练
数列
1.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为() A.1B.2C.3D.4
2.公比为2的等比数列{an}的各项都是正数,且a3·a11=16,则a5等于
()
A.1B.2C.4D.8 3.在等差数列{an}中,已知a4+a8=16,则该数 -
构造法之构造函数
构造法之构造函数:题设条件多元-构造一次函数B:题设有相似结构-构造同结构函数主要介绍C:题设条件满足三角特性-构造三角函数 D:其它方面——参考构造函数解不等式A、题设条件多
-
构造法证明等差
构造法证明等差、等比数列等差、等比数列的判定与证明【例2】已知数列{an}的前n项和为Sn,且满足:an-2SnSn-1=0(n≥2,n∈11N+,Sn≠0),a1=2,判断S与{an}是否为等差数列,并说明你的理由. n[
-
基于构造函数的放缩法证数列型不等式问题的教学设计
基于构造函数的放缩法证数列型不等式问题的教学设计 教学内容分析 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考
-
高三数学数列放缩法
数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式
-
放缩法证明数列不等式
放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用
-
放缩法证明数列不等式
放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n
-
第二章 数列测试题(题目+答案)
第2章 数列 单元测试 一、选择题(本大题共10小题,每小题5分,共50分) 1. 在数列1,1,2,3,5,8,x,21,34,55中,x等于( ) A.11B.12 C.13D.141答案:C anan1an2 2.21与21,两数的等比中项是 A.1B.1 C.1
-
排水法求体积
教学内容:第51页的例题6 教学目标: 知识与技能:使学生进一步熟练掌握求长方体和正方体积的方法。过程与方法:能根据实际情况,应用排水法求不规则物体的体积。情感态度价值观:培
-
巧用构造法证明不等式
巧用构造法证明不等式构造法是指在解决数学问题的过程中,为了完成由条件向结论的转化,通过构造辅助元素,架起一座沟通条件和结论的桥梁,从而使问题得到解决。不等式证明是高中数
-
构造法证明不等式(合集五篇)
构造法证明不等式由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使得不等式证明成为中学数学的难点之一.下面通过数例介绍构造法在证明不等式中的应用.一、构造一次函数
-
构造函数法与放缩法
构造函数法证明不等式不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等式就是其常见题
-
构造法证明不等式5
构造法证明不等式(2)(以下的构造方法要求过高,即使不会也可以,如果没有时间就不用看了)在学习过程中,常遇到一些不等式的证明,看似简单,但却无从下手,多种常用证法一一尝试,均难以凑效