专题:基本不等式方法总结
-
证明不等式的基本方法
证明不等式的基本方法一、比较法(1)作差比较法3322【例1】已知a,b都是正数,且ab,求证:ababab【1-1】 已知ab,求证:a3b3ab(ab)【1-2】已知ab,求证:a46a2b2b44ab(a2b2)(2)作商比较法a
-
证明基本不等式的方法(5篇范文)
2.2 证明不等式的基本方法——分析法与综合法●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点.2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与
-
证明不等式的基本方法—比较法五篇范文
§4.2.1证明不等式的基本方法—比较法【学习目标】能熟练运用比较法来证明不等式。【新知探究】1.比较法证明不等式的一般步骤:作差(商)—变形—判断—结论.2.作差法:a-b>0a>b,a-b<0a<b.
-
证明不等式的基本方法二1
证明不等式的基本方法二综合法与分析法1教学目的:教学重点:综合法、分析法教学难点:不等式性质的综合运用 一、复习引入:1.重要不等式:如果a,bR,那么a2b22ab(当且仅当ab时取""号)2
-
证明不等式的基本方法一5则范文
证明不等式的基本方法一------ 比较法教学目的:以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用教学重点:比较法的应用教学难点:常见
-
不等式证明的基本方法 经典例题透析
经典例题透析 类型一:比较法证明不等式 1、用作差比较法证明下列不等式: ; (a,b均为正数,且a≠b) (1)(2)思路点拨:(1)中不等号两边是关于a,b,c的多项式,作差后因式分解的前途不大光明,但
-
2.1证明不等式的基本方法:比较法
2.1证明不等式的基本方法:比较法 (一)教学目标 1.知识与技能: 掌握比较法证明不等式的方法。 2.过程与方法: 通过糖水(盐水)不等式引入比较法;通过对比较法的两种形式,加深对比较法的
-
基本不等式练习题
基本不等式练习题一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若aR,下列不等式恒成立的是A.a21aB121C.a296aD.lg(a1)lg|2a
-
基本不等式说课稿(最终定稿)
基本不等式是主要应用于求某些函数的最值及证明的不等式。以下是小编整理的基本不等式说课稿,希望对大家有帮助!基本不等式说课稿1尊敬的各位考官大家好,我是今天的X号考生,今天
-
基本不等式教案
基本不等式 【教学目标】 1、掌握基本不等式,能正确应用基本不等式的方法解决最值问题 2、用易错问题引入要研究的课题,通过实践让同学对基本不等式应用的二个条件有进一步的
-
基本不等式练习题
3.4基本不等式 重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题. 考纲要求:①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. 经典
-
不等式的证明方法总结
不等式的证明方法总结西安高新三中张霁一.比较法(作差比较,作商比较)例1.已知x0∴(x2+y2)(x-y)>(x2-y2)(x+y).例2.已知a>b>c,求证a2b+b2c+c2a>ab2+bc2+ca2.证明:∵(a2b+b2c+c2a)-(ab2+
-
证明不等式方法
不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。 1比较法比较法是证明不等式的最基本方法
-
不等式证明若干方法
安康学院 数统系数学与应用数学 专业 11 级本科生论文(设计)选题实习报告11级数学与应用数学专业《科研训练2》评分表注:综合评分60的为“及格”;
-
证明不等式的基本方法—综合法与分析法
§4.2.2证明不等式的基本方法—综合法与分析法【学习目标】能熟练运用综合法与分析法来证明不等式。【新知探究】1.用综合法证明不等式:从已知条件出发,利用不等式的性质和已证
-
晋级课 证明不等式的基本方法—比较法
证明不等式的基本方法—比较法 高二数学组 李彩妨 【学习目标】 1、理解并掌握证明不等式的基本方法---比较法; 2、熟悉并掌握比较法证明不等式的基本步骤:作差(商)---变形---
-
基本不等式教学反思
基本不等式教学反思 基本不等式教学反思1平时我们听课很多都是新授课,课的模式我们也探讨很多了,而此节就课型而言应算作习题课,为何上此课型,主要是提出一种上法,让同仁加以探
-
基本不等式的证明
课题:基本不等式及其应用一、教学目的(1)认知:使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和abab(a、b∈R+,当且仅当a=b时取“=”号),并能应用它们证明一些