专题:九年级下册二次函数
-
九年级数学下册《二次函数》教学反思
九年级数学下册《二次函数》教学反思 在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为与
-
九年级数学下册《二次函数》知识点总结苏教版(★)
九年级数学下册《二次函数》知识点总结苏教版 一、二次函数 一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c 则称y为x的二次函数。 二次函数表达式的右边通常为二次三
-
苏教版九年级数学下册第六章知识点归纳:二次函数(定稿)
苏教版九年级数学下册第六章知识点归纳:二次函数 一、定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(ane;0),则称y为x的二次函数。 二、二次函数的三
-
湘教版九年级数学下册二次函数教学案
湘教版九年级数学下册 第二章二次函数教学案 总 1 3 课时 编写人 阳卫民 第二章、二次函数 总序第9个教案 课 题 建立二次函数模型 第1课时 编写时间 2012年11 月 日 执
-
二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围 -
二次函数
?二次函数?测试一.选择题〔36分〕1、以下各式中,y是的二次函数的是()A.B.C.D.2.在同一坐标系中,作+2、-1、的图象,那么它们()A.都是关于轴对称B.顶点都在原点C.都是抛物线开口向上D.以上
-
九年级数学下册《1.1二次函数》教学教案(湘教版)
九年级数学下册《1.1二次函数》教学教案(湘教版) 【知识与技能】 .理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式. 2.能够表示简单变量之间的二次
-
九年级二次函数综合测试题及答案
二次函数单元测评 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4)B.(-1,2)C. (1,2)D.(
-
初中九年级二次函数知识点总结(合集)
初中九年级二次函数知识点总结总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它能使我们及时找出错误并改正,让我们一起认
-
九年级上册二次函数教学设计
二次函数y=ax 的图像与性质教学设计 一、教材分析: 本节是学生学习了二次函数的概念之后,对其图象及性质逐步进行探究的一个内容,在此之前学生已经对正比例函数、一次函数和反
-
九年级数学下二次函数教案
教学课题:二次函数(1)
教案背景
这节课是在学完正、反比例、一次函数,认识了一元二次方程之后的二次函数的第一节课。本章内容,既是对之前所学函数知识的一个补充,对函数知识系统 -
《二次函数》九年级数学教学案例
《二次函数》教学案例 一、教学内容:怎样求二次函数解析式 二、教学重点:求二次函数解析式的几种方法。难点:二次函数解析式的求法。 三、教学案例过程: 问题:已知二次函数的
-
初中九年级二次函数知识点总结
二次函数
I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a -
数学北师大版九年级下册22.2.1《二次函数》教学设计
22.2.1《二次函数》教学设计 一、 教学目标: 1、经历根据具体问题的数量关系探索二次函数的模型的过程,初步形成学生利用函数的观点认识现实世界的意识和能力。 2、通过二次
-
九年级 数学二次函数单元测试题及答案
二次函数单元测评 (试时间:60分钟,满分:100分) 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是()
-
二次函数综合题
二次函数综合题 如图所示,在直角坐标系中,A(-1,0),B(3,0),C(0,3) 1.用三种方法求出经过A B C三点的抛物线解析式2.抛物线的顶点坐标为D( ) 3.求△ABC的面积,求四边形ACDB的面
-
二次函数练习
二次函数练习
1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________
2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------ 3,二 -
《二次函数 》教案
命题人:刘英明 审题人:曹金满 课型:新授课《二次函数 》教案学习重点:通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.学习难点:理解二次函数的概念,掌握