专题:利用函数性质解不等式
-
利用函数凹凸性质证明不等式
利用函数的凹凸性质证明不等式内蒙古包头市第一中学张巧霞摘要:本文主要利用函数的凹凸性来推导和证明几个不等式.首先介绍了凹凸函数的定义,描述了判定一个函数具有凹凸性质
-
构造函数巧解不等式
构造函数巧解不等式湖南 黄爱民函数与方程,不等式等联系比较紧密,如果从方程,不等式等问题中所提供的信息得知其本质与函数有关,该题就可考虑运用构造函数的方法求解。构造函数,
-
构造函数,妙解不等式
构不等式与函数是高中数学最重要的两部分内容。把作为高中数学重要工具的不等式与作为高中数学主线的函数联合起来,这样资源的优化配置将使学习内容在函数思想的指导下得到重
-
数列----利用函数证明数列不等式
数列
1 已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。 (Ⅰ)求a1,a2的值; (Ⅱ)设a10,数列{lg大值。2已知数列{an}的前n项和Sn
(1)确定常数k,求an;
(2)求数列{3在等差数列an中 -
函数解答题-构造函数证明不等式
函数解答题-构造函数证明不等式 例1(2013年高考北京卷(理))设L为曲线C:ylnx在点(1,0)处的切线. x(I)求L的方程;(II)证明:除切点(1,0)之外,曲线C在直线L的下方.【答案】解: (I)设
-
构造函数,利用导数证明不等式
构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(
-
利用函数的单调性证明不等式
龙源期刊网 http://.cn
利用函数的单调性证明不等式
作者:胡锦秀
来源:《数理化学习·高一二版》2013年第04期
函数的单调性是函数的重要性质之一,在不等式证明中扮演着重要角 -
利用函数的单调性证明不等式
利用函数的单调性证明不等式单调函数是一个重要的函数类, 函数的单调性应用广泛, 可利用它解方程、求最值、证明等式与不等式、求取值范围等, 并且可使许多问题的求解简单明
-
一道构造函数解不等式题-段爱东
2例.定义域为R的函数f(x)满足f(x)f(x)x,且在,0上单调递增,若f(2a)f(a)22a,求a的范围 (x)2x2f(x)0 解:由f(x)f(x)x得f(x)222x2设F(x)f(x)则F(x)f(x)x 2又a,1x0,f(x)单调递增,f(x)0
-
应用凹凸函数的性质证明不等式解读
应用凹(凸函数的性质证明不等式 435000 湖北省黄石市第二中学 王碧纯 不等式的证明是高中数学中的一个重要内容.由于证题方法多、技巧性强,所以是一个难点.本文介绍应用凹(
-
利用函数单调性证明积分不等式(修改)
利用函数单调性证明积分不等式黄道增浙江省台州学院(浙江317000)摘要:积分不等式的证明方法多种多样,本文主要利用被积函数的单调性和通过构造辅助函数的单调性证明积分不等式。
-
不等式性质练习题
﹤不等式性质
一、选择题
1、已知ab0,下列不等式恒成立的是
A.a2
b2
B.ab1C.1111
abD.ab2、已知a0,b1,下列不等式恒成立的是
A.a
ababB.aaaaaa
2 b2baC.bb2aD.bab
3、若a,b,c,d -
不等式的性质
《不等式的性质》的教学设计与反思 庆阳市西峰区彭原乡彭原初级中学马杰 [教材分析] 《不等式的性质》的内容属于初中数学“数与代数”部分。数量之间除有相等关系外,还有大小
-
利用几何画板探索反比例函数的性质
利用几何画板探索反比例函数的性质教学设计 福州聋哑学校魏苏珊杨帆 【课题】利用几何画板探索反比例函数的性质 【教学内容】形如y=k/x(k≠0)的函数叫做反比例函数,利用描点
-
复合函数不等式 2
复合函数不等式
一元二次不等式
16.E3、B6、B7[2013·安徽卷] 已知一元二次不等式f(x)0的解集为
A.{x|x-lg 2}
B.{x|-1 -
构造函数证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化
-
构造函数证明不等式
构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l
-
函数法证明不等式[大全]
函数法证明不等式已知函数f(x)=x-sinx,数列{an}满足0证明0证明an+1g(0)=0,故不等式①成立因此an+1a>b>0,求证:p19第9题:已知三角形三边的长是a,b,c,且m是正数,求证:p12例题2:已知