专题:双曲线经典例题透析
-
§8.4双曲线的简单几何性质例题(四)
[例1]过点P(8,1)的直线与双曲线x24y24相交于A、B两点,且P是线段AB的中点,求直线AB的方程. 选题意图:考查直线与曲线位置关系等基础知识. 解:设A、B的坐标分别为(x1,y1)、(x2,y2) 则x124
-
8.4双曲线的简单几何性质例题(一)
高二圆锥曲线方程同步练习4(双曲线的简单几何性质) 例1 已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线与椭圆有公共焦点,且椭圆的长半轴比双曲线的实半轴大4,两曲线的
-
§8.4双曲线的简单几何性质例题(三)
[例1]已知双曲线xa22yb22b>0)的焦点坐标是F1(-c,0)和F2(c,0),P(x0,y0)1 (a>0,是双曲线上的任一点,求证:|PF1|=|a+ex0|,|PF2|=|a-ex0|,其中e是双曲线的离心率. 选题意图:巩固双曲线的第二定义,给
-
双曲线的简单几何性质 典型例题解析
典例剖析 x2y2[例1]已知双曲线22=1(a>0,b>0)的焦点坐标是F1(-c,0)和F2(c,0),P(x0,y0)ab是双曲线上的任一点,求证|PF1|=|a+ex0|,|PF2|=|a-ex0|,其中e是双曲线的离心率. x2y2【证明】 双曲线22=1
-
双曲线的简单几何性质 典型例题解析[推荐阅读]
典例剖析 [例1]已知双曲线的方程by-ax=ab(a>0,b>0),求双曲线的实半轴长和虚半轴长、焦点坐标、渐近线方程. 【解】 把方程化为标准方程ya22222222xb22=1, 由此可知,实半轴长为a,虚半
-
不等式证明的基本方法 经典例题透析
经典例题透析 类型一:比较法证明不等式 1、用作差比较法证明下列不等式: ; (a,b均为正数,且a≠b) (1)(2)思路点拨:(1)中不等号两边是关于a,b,c的多项式,作差后因式分解的前途不大光明,但
-
双曲线教案
2.2.1 双曲线及其标准方程 一、教学目标 1. 通过试验体会双曲线图形,从中抽象出双曲线定义,通过讨论能正确说出双曲线定义. 2. 会画双曲线简图. 3. 能由椭圆标准方程的推导过
-
双曲线的教案
《双曲线的简单几何性质》说课稿 一、教材分析 1.教材中的地位及作用 本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何
-
双曲线教学设计
双曲线及其标准方程教学 沾化一中郭梅芳 一、教材分析: 《双曲线及其标准方程》是全日制普通高级中学教科书(人教A版)选修2-1第二章第三节内容,双曲线是平面解析几何的又一重要
-
双曲线教学设计
双曲线及其标准方程教学设计 一.教学目标: 1.知识目标:掌握双曲线的定义并会推导其方程. 2.能力目标:能根据已知条件,选择恰当的形式的双曲线方程解题;加深对类比,化简,分类
-
关于双曲线知识点总结
双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的
-
《二元一次不等式(组)与平面区域》典型例题透析
数学备课大师 www.eywedu.net 目录式免费主题备课平台! 《二元一次不等式(组)与平面区域》典型例题透析 类型一:二元一次不等式(组)表示的平面区域 例1. 画出不等式2xy40表示的平
-
例题
例1.已知回归模型EN,式中E为某类公司一名新员工的起始薪金(元),N为所受教育水平(年)。随机扰动项的分布未知,其他所有假设都满足。 (1)从直观及经济角度解释和。 ˆ和满足线性性、无偏
-
例题--例题
序号
2009-2010学年度第二学期大作业课程名称: 组织行为学任课老师: 刘尚明作业题目: 企业文化建设问题探索姓名:
学号:专业:行政管理教学中心:华南理工深圳宝安教学中心联系电话:评 -
双曲线及其简单几何性质作业
家长签字: 学之导教育中心作业———————————————————————————————学生: 授课时间:________年级: 教师:1 求满足下列条件的双曲线的标准方程 (1
-
双曲线几何性质2
授课时间 周星期 授课班级 授课教师 方法、技巧、规律 课双曲线几何性质 题 学1.了解双曲线的简单几何性质——渐近线习2.能用双曲线的简单几何性质解决一些简单问题。
-
§8.2.4双曲线几何性质
双曲线的几何性质(2) 一.课题:双曲线的几何性质(2) 二.教学目标:1. 巩固双曲线的几何性质; 2. 能熟练地利用双曲线的性质求双曲线的标准方程。 三.教学重、难点:几何性质的运用。 四.教
-
双曲线的简单几何性质
双曲线的简单几何性质 【学习障碍】 1.理解障碍 (1)关于双曲线对称性的理解 把双曲线方程中的y换为-y,方程不变,说明双曲线关于x轴对称.其原因是设(x,y)为双曲线上的一点,y换为-y方