专题:微分中值定理构造函数
-
微分中值定理的证明题
微分中值定理的证明题 1. 若f(x)在[a,b]上连续,在(a,b)上可导,f(a)f(b)0,证明:R,(a,b)使得:f()f()0。 证:构造函数F(x)f(x)ex,则F(x)在[a,b]上连续,在(a,b)内可导, (a,b),使F()0 且F(a)
-
关于中值定理中构造函数的方法
关于中值定理中创立函数的方法
n先举个例子:已知f(x)在(0,1)可导,在[0,1]内连续。而且f=0.证明:存在§∈(0,1),使得nf(§)+§f´(§)=0.证明:设F(x)=xf(x)
则F(0)=F(1)=0
∴存在§ -
高等数学考研大总结之五 微分中值定理
第五章微分中值定理
一,罗尔(Rolle)中值定理
1 费马(Fermat)引理:设fx在点x0取得极值,且f/x0存在则f/x0=0。 解析:几何意义:曲线在极值点处的切线是平行于x轴的。
2罗尔(Rolle)中值定理 -
微分中值定理的证明与应用分析五篇
本科生毕业论文(设计) 题目 微分中值定理的证明与应用分析姓名马华龙 学号2009145154 院系电气与自动化学院专业测控与仪器技术 指导教师魏春玲职称 教授2012 年 5月 20日
-
构造函数
构造函数
1.设
f(x)
,g(x)分别为定义在R上的奇函数和偶函数,当x0时,
f(x)g(x)f(x)g(x)0,且g(3)0,则不等式f(x)g(x)0的解集为______.
2.设f(x)是定义在R上的奇函数,且f(2)0,当x0时,有 -
有关中值定理的证明题
中值定理证明题集锦 1、已知函数f(x)具有二阶导数,且limx0f(x)0,f0,试证:在区间(0,1)内至少x存在一点,使得f()0. 证:由limf(x),由此又得00 ,可得limf(x)0,由连续性得f(0)x0x0xf(x)
-
中值定理超强总结
咪咪原创,转载请注明,谢谢! 1、 所证式仅与ξ相关 ①观察法与凑方法 例 1 设f(x)在[0,1]上二阶可导,f(0)ff(0)0 试证至少存在一点(a,b)使得f()2f()1分析:把要证的式子中的 换
-
考研数学高等数学重要知识点解析--有关微分中值定理的证明(精选五篇)
考研数学高等数学重要知识点解析—有关微分中值定理的证明万学教育•海文考研 王丹2013年考研数学大纲于2012年9月14日正式出炉,数学一、数学二、数学三高等数学考试内容和考
-
高等数学中值定理总结(5篇)
咪咪原创,转载请注明,谢谢! 中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、 所证
-
高等数学中值定理总结(含5篇)
咪咪原创,转载请注明,谢谢!
中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。
1、 所证 -
【考研数学】中值定理总结
中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、 所证式仅与ξ相关 ①观察法与
-
构造函数法
函数与方程数学思想方法是新课标要求的一种重要的数学思想方法,构造函数法便是其中的一种。
高等数学中两个重要极限
1.limsinx1 x0x
11x2.lim(1)e(变形lim(1x)xe) x0xx
由以上两 -
高等数学 极限与中值定理 应用
(一)1.xsinlimxlimxsin2xx1 22xx1(洛必达法则)1x2 =lim2x22xx1 2 2. xx limxlimsinxcosx1 13. x0sinxlimcosxx0limtanxsinxx3 sinx3limx sinx(1cosx)x0xcosx3 x3lim23x0
-
2018考研数学 中值定理证明题技巧
为学生引路,为学员服务 2018考研数学 中值定理证明题技巧 在考研数学中,有关中值定理的证明题型是一个重要考点,也是一个让很多同学感到比较困惑的考点,不少同学在读完题目后
-
拷贝构造函数剖析
拷贝构造函数剖析
在讲课过程中,我发现大部分学生对拷贝构造函数的理解不够深入,不明白自定义拷贝构造函数的必要性。因此,我将这部分内容,进行了总结。
拷贝构造函数是一种特殊 -
构造法之构造函数
构造法之构造函数:题设条件多元-构造一次函数B:题设有相似结构-构造同结构函数主要介绍C:题设条件满足三角特性-构造三角函数 D:其它方面——参考构造函数解不等式A、题设条件多
-
构造函数证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化
-
构造函数证明不等式
构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l