专题:证明定积分不等式例题
-
重要不等式汇总(例题答案)5则范文
其他不等式综合问题例1:(第26届美国数学奥题之一)设a、b、c∈R+,求证:1111.(1)a3b3abcb3c3abcc3a3abcabc分析;最初,某刊物给出了一种通分去分母的较为复杂的证法,这里试从分析不等式的
-
不等式的证明方法经典例题
不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学
-
积分不等式的证明及应用
衡阳师范学院毕业论文(设计) 题 目:积分不等式的证明及应用 所 在 系: 数学与计算科学系 专 业: 数学与应用数学 学 号: 08090233 作者姓名: 盛军宇 指导教师: 肖娟 2012年 4 月 27
-
积分不等式的证明方法
南通大学毕业论文 摘要 在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明
-
构造函证不等式范文大全
造函证不等式
b-a2
求证:>1-(b>a).(*)
2eb+1x2
证明:令φ(x)=+x-1(x≥0),
2e+112e
则φ-
2(e+1)
(e+1)-4e(e-1)=x2x2≥0(仅当x=0时等号成立).
2(e+1)2(e+1)
∴φ(x)在[0,+∞)上单调递增, ∴x>0时,φ(x)>φ(0)=0 -
均值不等式的正确使用及例题
均值不等式的正确使用及例题利用不等式求最值,要注意不等式成立的条件、等号成立的条件以及定值的条件,初学不等式时容易用错,现通过比较来说明均值不等式的正确使用。(一)均值不
-
高中数学不等式证明的常用方法经典例题
关于不等式证明的常用方法比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个
-
不等式的证明典型例题分析
不等式的证明典型例题分析例1 已知,求证:.证明 ∵∴,当且仅当时等号成立.点评 在利用差值比较法证明不等式时,常采用配方的恒等变形,以利用实数的性质例2 已知均为正数,求证. .分析
-
高中数学不等式典型例题解析(五篇模版)
高中数学不等式典型例题解析 高中数学辅导网http://www.xiexiebang.com/ 概念、方法、题型、易误点及应试技巧总结 不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可
-
不等式的证明·典型例题2
不等式的证明·典型例题 【例1】 已知a,b,c∈R+,求证:a3+b3+c3≥3abc. 【分析】 用求差比较法证明. 证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc =(a+b+c)[(a+b)2-(a+b)c+c2]-3
-
放缩法证明数列不等式经典例题
放缩法证明数列不等式主要放缩技能: 1.11111112 nn1n(n1)nn(n1)n1n1144112()22n4n1(2n1)(2n1)2n12n1n242. 2) 4.2n2n2n1115. n (21)2(2n1)(2n2)(2n1)(2n11)2n112n16.n22(n1
-
Minkowski不等式的证明(积分形式)
闵可夫斯基不等式在数学中,闵可夫斯基不等式(Minkowski不等式)表明Lp空间是一个赋范向量空间。设是一个 度量空间,,那么如果,等号成立当且仅当,或者,我们有:闵可夫斯基不等式是中的三
-
探讨定积分不等式的证明方法
探讨定积分不等式的证明方法 摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。 关键词:定积分不等式证法 不等式的证明在高等数学的学习中很常见,但关
-
曲线积分与曲面积分重点总结+例题
高等数学教案 曲线积分与曲面积分 第十章曲线积分与曲面积分 【教学目标与要求】 1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2.掌握计算两类
-
不等式证明的基本方法 经典例题透析
经典例题透析 类型一:比较法证明不等式 1、用作差比较法证明下列不等式: ; (a,b均为正数,且a≠b) (1)(2)思路点拨:(1)中不等号两边是关于a,b,c的多项式,作差后因式分解的前途不大光明,但
-
反假币证学习案例题
案例题: 1.小李是某银行职员,7 月4 日小李为张先生办理的存款业务,对假币略有所知的小李发现其中有一张人民 币 100 元纸币疑似为假币,他将假币交给储蓄主管,储蓄主管将这张100元
-
利用定积分证明数列和型不等式
利用定积分证明数列和型不等式我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些
-
利用定积分证明数列和型不等式
利用定积分证明数列和型不等式 我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些