2.2.1双曲线及其标准方程 课时作业高二上学期数学北师大版(2019)选择性必修第一册(含答案)

2021-06-15 15:20:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《2.2.1双曲线及其标准方程 课时作业高二上学期数学北师大版(2019)选择性必修第一册(含答案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2.2.1双曲线及其标准方程 课时作业高二上学期数学北师大版(2019)选择性必修第一册(含答案)》。

2.1 双曲线及其标准方程

1.双曲线方程为x2-2y2=1,则它的右焦点坐标为()

A.22,0

B.62,0

C.52,0

D.(3,0)

2.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若|PF1|-|PF2|=b,且双曲线的焦距为25,则该双曲线的方程为()

A.x24-y2=1

B.x23-y22=1

C.x2-y24=1

D.x22-y23=1

3.已知双曲线x2λ-3+y22-λ=1,焦点在y轴上,若焦距为4,则λ等于()

A.32

B.5

C.7

D.12

4.已知双曲线x24-y25=1上一点P到左焦点F1的距离为10,则PF1的中点N到坐标原点O的距离为()

A.3或7

B.6或14

C.3

D.7

5.如图,已知双曲线的方程为x2a2-y2b2=1(a>0,b>0),点A,B均在双曲线的右支上,线段AB经过双曲线的右焦点F2,|AB|=m,F1为双曲线的左焦点,则△ABF1的周长为()

A.2a+2m

B.4a+2m

C.a+m

D.2a+4m

6.与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆P的圆心在()

A.一个椭圆上

B.一个圆上

C.一条抛物线上

D.双曲线的一支上

7.以椭圆x23+y24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是.8.已知点F1,F2分别是双曲线x29-y216=1的左、右焦点,若点P是双曲线左支上的点,且|PF1|·|PF2|=32,则△F1PF2的面积为.9.已知与双曲线x216-y29=1共焦点的双曲线过点P-52,-6,求该双曲线的标准方程.能力达标

10.“mn<0”是方程“mx2+ny2=1表示双曲线”的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

11.已知平面内两定点A(-5,0),B(5,0),动点M满足|MA|-|MB|=6,则点M的轨迹方程是()

A.x216-y29=1

B.x216-y29=1(x≥4)

C.x29-y216=1

D.x29-y216=1(x≥3)

12.动圆与圆x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心的轨迹是()

A.双曲线的一支

B.圆

C.椭圆

D.双曲线

13.若双曲线x2n-y2=1(n>1)的左、右焦点分别为F1,F2,点P在双曲线上,且满足|PF1|+|PF2|=2n+2,则△PF1F2的面积为()

A.1

B.12

C.2

D.4

14.已知左、右焦点分别为F1,F2的双曲线C:x2a2-y2=1(a>0)过点15,-63,点P在双曲线C上,若|PF1|=3,则|PF2|=()

A.3

B.6

C.9

D.12

15.若曲线C:mx2+(2-m)y2=1是焦点在x轴上的双曲线,则m的取值范围为.16.焦点在x轴上的双曲线经过点(42,-3),且Q(0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为.17.已知双曲线E:x216-y24=1的左、右焦点分别为F1,F2.(1)若点M在双曲线上,且MF1·MF2=0,求点M到x轴的距离;

(2)若双曲线C与双曲线E有相同的焦点,且过点(32,2),求双曲线C的方程.18.已知△OFQ的面积为26,且OF·FQ=m,其中O为坐标原点.(1)设6

(2)设以O为中心,F为其中一个焦点的双曲线经过点Q,如图所示,|OF|=c,m=64-1c2,当|OQ|取得最小值时,求此双曲线的标准方程.1.双曲线方程为x2-2y2=1,则它的右焦点坐标为()

A.22,0

B.62,0

C.52,0

D.(3,0)

答案B

解析将双曲线方程化为标准方程为x2-y212=1,∴a2=1,b2=12,∴c2=a2+b2=32,∴c=62,故右焦点坐标为62,0.2.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若|PF1|-|PF2|=b,且双曲线的焦距为25,则该双曲线的方程为()

A.x24-y2=1

B.x23-y22=1

C.x2-y24=1

D.x22-y23=1

答案C

解析由题意得|PF1|-|PF2|=2a=b,c2=a2+b2,2c=25,解得a2=1,b2=4,则该双曲线的方程为x2-y24=1.3.已知双曲线x2λ-3+y22-λ=1,焦点在y轴上,若焦距为4,则λ等于()

A.32

B.5

C.7

D.12

答案D

解析根据题意可知,双曲线的标准方程为

y22-λ-x23-λ=1.由其焦距为4,得c=2,则有c2=2-λ+3-λ=4,解得λ=12.4.已知双曲线x24-y25=1上一点P到左焦点F1的距离为10,则PF1的中点N到坐标原点O的距离为()

A.3或7

B.6或14

C.3

D.7

答案A

解析连接ON,ON是△PF1F2的中位线,∴|ON|=12|PF2|,∵||PF1|-|PF2||=4,|PF1|=10,∴|PF2|=14或|PF2|=6,∴|ON|=7或|ON|=3.5.如图,已知双曲线的方程为x2a2-y2b2=1(a>0,b>0),点A,B均在双曲线的右支上,线段AB经过双曲线的右焦点F2,|AB|=m,F1为双曲线的左焦点,则△ABF1的周长为()

A.2a+2m

B.4a+2m

C.a+m

D.2a+4m

答案B

解析由双曲线的定义,知|AF1|-|AF2|=2a,|BF1|-|BF2|=2a.又|AF2|+|BF2|=|AB|,所以△ABF1的周长为|AF1|+|BF1|+|AB|=4a+2|AB|=4a+2m.6.与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆P的圆心在()

A.一个椭圆上

B.一个圆上

C.一条抛物线上

D.双曲线的一支上

答案D

解析由x2+y2-8x+12=0,得(x-4)2+y2=4,画出圆x2+y2=1与(x-4)2+y2=4的图象如图,设圆P的半径为r,∵圆P与圆O和圆M都外切,∴|PM|=r+2,|PO|=r+1,则|PM|-|PO|=1<4,∴点P在以O,M为焦点的双曲线的左支上.7.以椭圆x23+y24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是.答案y2-x23=1

解析由题意知,双曲线的焦点在y轴上,设双曲线的标准方程为y2a2-x2b2=1,则a=1,c=2,所以b2=3,所以双曲线的标准方程为y2-x23=1.8.已知点F1,F2分别是双曲线x29-y216=1的左、右焦点,若点P是双曲线左支上的点,且|PF1|·|PF2|=32,则△F1PF2的面积为.答案16

解析因为P是双曲线左支上的点,所以|PF2|-|PF1|=6,两边平方得|PF1|2+|PF2|2-2|PF1|·|PF2|=36,所以|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+2×32=100.在△F1PF2中,由余弦定理,得cos

∠F1PF2=|PF1|2+|PF2|2-|F1F2|22|PF1|·|PF2|=100-1002|PF1|·|PF2|=0,所以∠F1PF2=90°,所以S△F1PF2=12|PF1|·|PF2|=12×32=16.9.已知与双曲线x216-y29=1共焦点的双曲线过点P-52,-6,求该双曲线的标准方程.解已知双曲线x216-y29=1,则c2=16+9=25,∴c=5.设所求双曲线的标准方程为x2a2-y2b2=1(a>0,b>0).依题意知b2=25-a2,故所求双曲线方程可写为x2a2-y225-a2=1.∵点P-52,-6在所求双曲线上,∴代入有(-52)2a2-(-6)225-a2=1,化简得4a4-129a2+125=0,解得a2=1或a2=1254.当a2=1254时,b2=25-a2=25-1254=-254<0,不合题意,舍去,∴a2=1,b2=24,∴所求双曲线的标准方程为x2-y224=1.能力达标

10.“mn<0”是方程“mx2+ny2=1表示双曲线”的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

答案C

解析因为mn<0,所以m,n均不为0且异号,方程mx2+ny2=1,可化为x21m+y21n=1,因为1m与1n异号,所以方程x21m+y21n=1表示双曲线,故“mn<0”是“方程mx2+ny2=1表示双曲线”的充分条件;反之,若mx2+ny2=1表示双曲线,则其方程可化为x21m+y21n=1,可知1m与1n异号,则必有mn<0,故“mn<0”是“方程mx2+ny2=1表示双曲线”的必要条件.综上可得,“mn<0”是方程“mx2+ny2=1表示双曲线”的充要条件.11.已知平面内两定点A(-5,0),B(5,0),动点M满足|MA|-|MB|=6,则点M的轨迹方程是()

A.x216-y29=1

B.x216-y29=1(x≥4)

C.x29-y216=1

D.x29-y216=1(x≥3)

答案D

解析由|MA|-|MB|=6,且6<|AB|=10,得a=3,c=5,b2=c2-a2=16.故其轨迹为以A,B为焦点的双曲线的右支.所以点M的轨迹方程为x29-y216=1(x≥3).12.动圆与圆x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心的轨迹是()

A.双曲线的一支

B.圆

C.椭圆

D.双曲线

答案A

解析设动圆的圆心为M,半径为r,圆x2+y2=1与x2+y2-8x+12=0的圆心分别为O1和O2,半径分别为1和2,由两圆外切的充要条件,得

|MO1|=r+1,|MO2|=r+2.∴|MO2|-|MO1|=1,又|O1O2|=4,∴动点M的轨迹是双曲线的一支(靠近O1).13.若双曲线x2n-y2=1(n>1)的左、右焦点分别为F1,F2,点P在双曲线上,且满足|PF1|+|PF2|=2n+2,则△PF1F2的面积为()

A.1

B.12

C.2

D.4

答案A

解析设点P在双曲线的右支上,则|PF1|-|PF2|=2n,已知|PF1|+|PF2|=2n+2,解得|PF1|=n+2+n,|PF2|=n+2-n,|PF1|·|PF2|=2.又|F1F2|=2n+1,则|PF1|2+|PF2|2=|F1F2|2,∴△PF1F2为直角三角形,∠F1PF2=90°,∴S△PF1F2=12|PF1|·|PF2|=12×2=1.14.已知左、右焦点分别为F1,F2的双曲线C:x2a2-y2=1(a>0)过点15,-63,点P在双曲线C上,若|PF1|=3,则|PF2|=()

A.3

B.6

C.9

D.12

答案C

解析由左、右焦点分别为F1,F2的双曲线C:x2a2-y2=1(a>0)过点15,-63,可得15a2-69=1,解得a=3,b=1,c=10,a+c>3,点P在双曲线C上,若|PF1|=3,可得P在双曲线的左支上,则|PF2|=2a+|PF1|=6+3=9.故选C.15.若曲线C:mx2+(2-m)y2=1是焦点在x轴上的双曲线,则m的取值范围为.答案(2,+∞)

解析由曲线C:mx2+(2-m)y2=1是焦点在x轴上的双曲线,可得x21m-y21m-2=1,即有m>0,且m-2>0,解得m>2.16.焦点在x轴上的双曲线经过点(42,-3),且Q(0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为.答案x216-y29=1

解析设焦点F1(-c,0),F2(c,0)(c>0),则由QF1⊥QF2,得kQF1·kQF2=-1,∴5c·5-c=-1,∴c=5,设双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),∵双曲线过点(42,-3),∴32a2-9b2=1.又c2=a2+b2=25,∴a2=16,b2=9,∴双曲线的标准方程为x216-y29=1.17.已知双曲线E:x216-y24=1的左、右焦点分别为F1,F2.(1)若点M在双曲线上,且MF1·MF2=0,求点M到x轴的距离;

(2)若双曲线C与双曲线E有相同的焦点,且过点(32,2),求双曲线C的方程.解(1)如图所示,不妨设点M在双曲线E的右支上,点M到x轴的距离为h,MF1·MF2=0,则MF1⊥MF2,设|MF1|=m,|MF2|=n,由双曲线定义,知m-n=2a=8,①

又m2+n2=(2c)2=80,②

由①②得mn=8,∴12mn=4=12|F1F2|·h,∴h=255.(2)设所求双曲线C的方程为

x216-λ-y24+λ=1(-4<λ<16),由于双曲线C过点(32,2),∴1816-λ-44+λ=1,解得λ=4或λ=-14(舍去),∴所求双曲线C的方程为x212-y28=1.18.已知△OFQ的面积为26,且OF·FQ=m,其中O为坐标原点.(1)设6

(2)设以O为中心,F为其中一个焦点的双曲线经过点Q,如图所示,|OF|=c,m=64-1c2,当|OQ|取得最小值时,求此双曲线的标准方程.解(1)因为12|OF||FQ|sin(π-θ)=26,|OF||FQ|cosθ=m,所以tan

θ=46m.又6

θ<4,即tan

θ的取值范围为(1,4).(2)设双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),Q(x1,y1),则FQ=(x1-c,y1),所以S△OFQ=12|OF|·|y1|=26,则y1=±46c.又OF·FQ=m,即(c,0)·(x1-c,y1)=64-1c2,解得x1=64c,所以|OQ|=x12+y12=38c2+96c2≥12=23,当且仅当c=4时,取等号,此时|OQ|最小,这时Q的坐标为(6,6)或(6,-6).因为6a2-6b2=1,a2+b2=16,所以a2=4,b2=12.于是所求双曲线的标准方程为x24-y212=1.

下载2.2.1双曲线及其标准方程 课时作业高二上学期数学北师大版(2019)选择性必修第一册(含答案)word格式文档
下载2.2.1双曲线及其标准方程 课时作业高二上学期数学北师大版(2019)选择性必修第一册(含答案).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐