第一篇:北理工微波实验报告总结
实验一 一般微波测试系统的调试
一、实验目的
1.了解一般微波测试系统的组成及其主要元、器件的作用,初步掌握它们的调整方法。2. 掌握频率、波导波长和驻波比的测量方法。3. 掌握晶体校正曲线的绘制方法。
二、实验装置与实验原理
常用的一般微波测试系统如1-1所示(示意图)。
测量放大器微波信号源隔离器可变衰减器频率计精密衰减器测量线终端负载图1-1
本实验是由矩形波导(3厘米波段,TE10模)组成的微波测试系统。其中,微波信号源(固态源或反射式速调管振荡器)产生一个受到(方波)调制的微波高频振荡,其可调频率范围约为7.5~12.4GHz。隔离器的构成是:在一小段波导内放有一个表面涂有吸收材料的铁氧体薄片,并外加一个恒定磁场使之磁化,从而对不同方向传输的微波信号产生了不同的磁导率,导致向正方向(终端负载方向)传播的波衰减很小,而反向(向信号源)传播的波则衰减很大,此即所谓的隔离作用,它使信号源能较稳定地工作。频率计实际上就是一个可调的圆柱形谐振腔,其底部有孔(或缝隙)与波导相通。在失谐状态下它从波导内吸收的能量很小,对系统影响不大;当调到与微波信号源地频率一致(谐振)时,腔中的场最强,从波导(主传输线)内吸收的能量也较多,从而使测量放大器的指示数从某一值突然降到某一最低值,如图1-2(a)所示。此时即可从频率计的刻度上读出信号源的频率。从图1-1可知,腔与波导(主传输线)只有一个耦合元件(孔),形成主传输线的分路,这种连接方式称为吸收式(或称反应式)连接方法。另一种是,腔与主传输线有两个耦合器件,并把腔串接于主传输线中,谐振时腔中的场最强,输出的能量也较多,因而测量放大器的指示也最大,如
图1-2(b)所示。这种连接方法称为通过式连接法。在实际中无论哪种连接方式,当不测频率时,为了不影响其它实验项目的观测,应把腔调到失谐状态。可变衰减器也是由一小段波导构成的,其中放有一表面涂有损耗性材料,并与波导窄壁平行放置的薄介质片。介质片越靠近波导中心处,衰减越大,反之,衰减越小。利用可变衰减器可以连续地改变信号源传向负载方向功率的大小;另外,如同隔离器一样,可变衰减器也具有一定的隔离作用。测量线是一段在其宽壁中心线开有一窄缝隙的矩形波导,与其配套的还有一个装有微波范围内用的晶体二极管检波器及同轴线调谐式探针座。探针从缝隙插入波导后,送入测量(选频)放大器,通过该放大器表头的读数,即可进行各实验项目的测量工作。系统的最后部分是终端负载,它是被测试的某一微波元、器件,也可以是匹配负载、短路片或短路活塞等。
IIOfr(a)fO图1-2fr(b)f 需要指出的是,由于微波信号源产生的等幅高频振荡很微弱,若对其直接进行检波,则检波器输出的直流分量也是很微弱的,用一般仪表难以对其进行观测。因此为了提高测试灵敏度,以便于观测,通常用一方波(重复频率1000Hz)对高频振荡进行幅度调制(也有用脉冲或其它波调制的)。经调制后的高频振荡通过检波后输出的是其包络,对包络中的基频(1000Hz)加以放大后再经检波,取出其直流分量加于测量放大器的指示表头,读数就方便了。
三、实验内容
1.首先按图1-1所示将测量系统安装好,然后接通电源和测量仪器的有关开关,观察微波信号源有无输出指示。若有指示,当改变衰减量或移动测量线探针的位置时,测量放大器的表头指示会有起伏的变化,这说明系统已在工作了。但这并不一定是最佳工作状态。例如,若是反射式速调管信号源的话还应把它调到输出功率最大的振荡模式(如n=2,参见附录),并结合调节信号源处的短路活塞,以使能量更有效地传向负载。若有必要,还可以调
节测量线探头座内的短路活塞,以获得较高地灵敏度,或者调节测量线探针伸入波导的程度,以便较好地拾取信号地能量(注意,伸入太多会影响波导内的场分布)。对于其它微波信号源也应根据说明书调到最佳状态。有时信号源无输出,但测量放大器也有一定指示。这可能是热噪声或其它杂散场的影响;若信号源有输出,但测量放大器的指示不稳定或者当测量线探针移动时,其指示不变,均属不正常情况,应检查原因,使之正常工作。系统正常工作时,可调节测量放大器的有关旋钮或可变衰减器的衰减量(衰减量不能为零,否则会烧坏晶体二极管),使测量放大器的指示便于读数。
2.测量微波信号源的频率和波导波长。测量信号源的频率调节旋钮,可使频率在7.5~12.4GHz的范围内变化。选取该范围内的某个频率,用频率计测出它的频率,并用测量线测出该频率的波导波长g。在测g时应将系统终端短路(例如用金属短路板或短路活塞),则系统呈纯驻波状态(理论上),其场强的幅度分布如图1-3所示。当测量线的探针处于z1和z2位置时,测量放大器的指示为最小(理论上为零),Ezd4z2d3图1-3d2z1d1此时从测量线的刻度上即可求出波导波长g2z2z1。在实际测量中,由于受设备的精度、灵敏度的限制,以及其它因素的影响,很难精确地确定z1和z2的位置。为提高测试精度,可采用“平均法”测定它们的位置,如图1-3所示。为了确定z1,使在z1两侧(尽量地靠近z1)的d1和d2处测量放大器有相同的指示数,则z1(d1d2)/2,同理可得z2(d3d4)/2。这比直接去测z1和z2要精确些。
3.绘制晶体矫正曲线
需要指出的是,当用测量线测定微波系统(波导)内场强幅度的分布规律时,测量放大器的指示值并不直接表示高频信号的场强值,而是通过晶体二极管检波后的电流值。我们已知传输系统的驻波s为:
sEmax/EminUmax/Umin
由于晶体二极管为一非线性器件(如图1-4(a)所示),因此就不能用测量放大器的读数直接套用上面的公式求出驻波比s。为了求出s,应作出晶体管的输入电压U(它与探针拾取的场强幅值成正比)与检波电流的关系曲线(如图1-4(b)所示),称为晶体校正曲线。
II(a)U图1-4(b)E此曲线中的电流虽然是从测量放大器中读出的值,但它对应的U值(或E),此时并非加于晶体二极管上的电压值,而是通过测量于计算求出的与场强幅值成正比例的“等效”的电压值。有了校正缺陷,当探针在场强幅值最大值时,测量放大器有一读数Imax,探针在场强幅值最小处时,有一读数Imin,从校正曲线中查出Imax和Imin,分别对应的U和Uminmax(Emax)(Emin),则驻波比s为:
UmaxEmaxs
UminEmin为了作出晶体校正曲线,需将系统终端短路,形成纯驻波状态。如图1-5所示。
EzB图1-5A
场强E的幅度E可表示为:
EEmaxsinzEmaxsin2gz
为了求出场强幅值与检波电流I之间的关系(晶体校正曲线),就要利用这个公式计算场强值(也即校正曲线中的U)。在7.5~12.4GHz范围内选定某一频率,使系统正常工作,并求出该频率对应的波导波长g。将测量线探针移到场强幅值的节点。例如图1-5中所示的A点,作为z0的参考点,并记下此时测量放大器的读数,从公式看该读数(理论上为零,实际上不为零)对应的E应为零。B是场强幅值的腹点,ABg4,将此距离等分为若干个小段(例如10个小段),从A点开始,按分小段使探针逐次向B点移动,并记住每一位置所对应的测量放大器的读数I,已经每一位置的坐标z的值,则sinB点对应于Emax,若Emax已知,则利用公式
2gz即可求出。
EEmaxsin2gz
即可求出每点的E(U)与每点的I一一对应的关系,根据这组数据即可画出晶体校正曲线。但实际上,Emax的值我们并不知道具体等于多少,为了解决这一问题,在作晶体校正曲线时,只需要知道各点场强幅值的相对大小就可以了,并不需要求出它们的绝对大小,因此,我们可以把B点对应的电流读数I作为Emax看待,而其它点的E(相对值)即可求出了。在实际测量中,为计算方便起见,可利用调节信号源的输出,可变衰减器的衰减量和测量放大器的有关旋钮等方法,使B对应的I的读数为10的某个整数倍(例如100)。另外需要指出的是,作晶体校正曲线也可以从场强幅值的腹点B开始,逐渐向节点A移动探针,测出所需要的数据,场强幅值的变化为余弦。但B点的确切位置比A点更难确定,所以,从A点开始,比从B点开始要好些。
最后补充一点,当晶体二极管的检波电流很小时,其电压和电流有近似于平方律的关系式:IKUK是与管子型号有关的结构参数,是常数。此时的驻波比S可近似为 2SEmaxEminUmaxImaxUminImin
而不需要查晶体校正曲线。
实验二 阻抗的测量
一、实验目的
1. 掌握最常用的阻抗的测量方法,并能利用公式和阻抗或导纳圆图计算阻抗。2. 测量喇叭天线的等效(输入)阻抗。
二、实验装置和实验原理
在微波范围内经常遇到对微波元(器)件阻抗的测量问题(例如,在研究若干个元、器件相互间的连接和匹配问题时),因此掌握阻抗的测量方法是十分重要的。测量阻抗的方法有多种,其中较常用的是利用测量线来进行测量。实验装置和实验一所用的完全相同。为画图简单起见,我们用方框图把它表示出来,如图2-1所示。
测量放大器信号源隔离器可变衰减器频率计精密衰减器测量线负载图2-
1三、实验内容
1.当无耗传输线终端接有任意复数阻抗的负载Zl时,系统呈行驻波状态,电压或场强幅值的分布规律如图2-2所示。
ZcZlEzλg2图2-2l1
为了求出被测阻抗Zl可采用两种方法,用公式计算和查圆图。首先讨论一下用公式计算的方法。根据传输线理论,等效(输入)阻抗Z(z)为
ZzZc据此,对终端被测负载Zl而言应为:
1(z)
1(z)ZlZc1(0)e1(0)ej0j0
式中,Zc为传输线的特性阻抗,(z)为电压反射系数,(0)为终端负载处的反射系数,0为其初相角。在电压(或场强幅度)最小点处反射系数(z)的相角应满足cos(2z0)1
cos(2z0)1
即2z0(2n1),n0,1,2,3...若取距终端负载最近的那个电压(或场强幅值)最小点的距离zzminl1,代入上式,则:
02l1
而2g,(0)s1 s1式中,g为波导波长,s为驻波比。由此可知,只要测出s和l1(在某一频率下),即可求出负载Zl,它比计算方法要方便得多,例如用阻抗圆图(用导纳圆图也可)来求阻抗Zl,如图2-3所示。如前所述,首先测出在某一频率下得驻波比s和电压最小点(距终端被测负载Zl最近得那点)的距离l1,然后在图2-3中以O点为圆心画出等驻波比圆(s圆),并与实轴交于P点,该点即电压最小点处的位置,其阻抗的归一化值为1/s。由P点开始沿等s圆逆时针旋转l1/g刻度,过此刻度与圆心O连一直线与s圆相交于M点,该点对应的值就是被测负载Zl的归一化值,将该值再乘以Zc,即得所求的负载阻抗Zl。
向信号源SPOrM向负载xl1λg图2-3
2.在实际测负载阻抗Zl的过程中,由于系统结构上的原因,用测量线无法直测得距负载最近的那个电压(或场强幅值)最小点的距离l1,例如,它可能处于测量线探针无法接近的位置。此时,可采用简接方法求出l,如图2-4所示。首先,将测量系统得终端用短路板
Zl12Ezz2l1z1图2-4
短路,形成纯驻波状态(参见图2-4中的图形①),终端即为电压(或场强幅值)得最小点(理论上为零点),从终端算起向信号源方向,每隔g/2的距离就出现一个最小点,因此总会由一些最小点落在测量探针可以达到的范围之内。我们可以任取其中的某个最小点(例如Z1点)看作系统得终端位置(即被测负载Zl的位置),然后取下短路板,接上被测负载Zl,此时系统呈纯驻波状态(参见图4-2中的图形②),在Z1的左侧找到距Z1最近的那个电压(或场强幅值)最小值位置Z2,则所求得l1Z2Z1。至此,再利用圆图即可求出被测负载Zl。
3. 在7.5~12.4GHz频率范围内得某个频率上将系统调整到正常工作状态,测出频率及其波导波长。在终端负载处装上被测的喇叭天线,求出驻波比s和距终端负载最近的电压(场强幅值)最小的距离l1,用阻抗(或导纳)圆图求出喇叭天线的等效(输入)阻抗,并将其与计算法求出的阻抗加以对照。改变一下信号源的频率,再重作一次,以观测喇叭天线等效(输入)阻抗的变化。
实验三 阻抗匹配
一、实验目的
掌握阻抗匹配的方法,利用单螺钉(相当于单株线)调配器使波导系统与喇叭天线相匹配。
二、实验装置和实验原理
1.阻抗匹配在实际应用中是很普遍、很重要的。因为这可以使信号源的功率更有效地供给传输线,并使传输线的负载吸收更多的功率,而且还可提高传输线的功率容量和增加信号源的稳定性等。匹配一般有信号源与传输线之间的匹配,以及传输线与负载之间的匹配。本实验仅研究后者的匹配问题。传输线与负载的匹配可以采用阻抗变换器来达到。也可以采用在传输系统中并联电抗性元件的方法达到。本实验采用后者,使波导系统与喇叭天线(负载)相匹配。
2.实验装置如图3-1所示。它与实验一和实验二的装置基本上是一样的,只是在测量
测量放大器信号源隔离器可变衰减器频率计频率计精密衰减器测量线负载图3-1调配器线与终端负载(喇叭天线)之间加入了一段带有螺钉调配器的矩形波导,称为单螺钉(单株线)调配器,利用它使波导系统与喇叭天线得到匹配。
3.图3-2是单螺钉调配器结构的示意图及其等效电路,终端负载Zl为一喇叭天线。螺钉从矩形波导宽壁的中心线处的缝隙中插入波导内,其插入深度可以调节,螺钉可以在缝隙中左右移动。由等效电路可知,螺钉的作用相当于一个并联在AA截面处的短路支线l(单株线),当负载Zl给定后,首先选取合适的距离d,当不考虑支线的影响时,使从AA向负载看去的归一化输入导纳为YiA1jb,然后调节l的长度(即螺钉深度),使其归一化的
输入电纳jbl恰好与jb相抵消(即b与bl大小相等,而符号相反),则在AA处总的导纳YAA1,从而在该截面处得到匹配。实验表明,螺钉插入深度较小时,其主要作用是使电场集中,具有电容的性质(容性电抗),当插入较多时,主要呈现电感性质(感性电抗),而插入适中时,近似于一串联谐振电路。这三种情况都与波导尺寸、螺钉直径和工作频率等有关。在实际应用中,螺钉插入深度太多(尤其传输大功率时),会引起传输系统功率容量下降。因此,螺钉调配器一般都工作于容性电抗的范围内。
缝隙螺钉AyiAZc测量线调配器喇叭天线ljblA’Zld图3-2
三、实验内容
1.首先在7.5~12.4GHz范围内某个频率上将整个实验装置调整到正常工作状态,测出所选定的频率和它对应的波导波长g,然后将喇叭天线和单螺钉调配器(在结构上它们可能已连成一个整体)一起接在测量线的终端。把螺钉从缝隙中全部旋出,测出驻波比s,以及喇叭天线的归一化的等效(输入)导纳yl,设它位于导纳圆图的P点,如图3-3所示。从P点开始沿等驻波比圆(s圆)向信号源方向转动,与g1的圆相交于M1和M2两点,它们距负载的距离(相对于g的值)分别为
d1g和
d2g,d1和d2是调配器螺钉可以选择的两个位置。但是,如前所述,为使螺钉工作在容抗范围内,因此应选M2点(也即dd2)作为螺钉的位置。
2.螺钉位置确定后,慢慢地调节其插入深度,每调节一次,都要从测量放大器上观察
一下驻波比s的变化趋势:应使最大读数与最小读数之差越小越好。当调到所要求的匹配状态时(例如,使s1.05),最大读数和最小读数之差应降到最小(例如,约5个小格左右)。由于各种因素的影响,螺钉的实际位置d会稍微偏离理论计算值,在实际调配过程中可略加调整,并根据实验确定螺钉的最后位置。应当指出,以上所述,是从理论的角度上阐述了单株线(单螺钉)调配器的计算方法和调匹配的过程。目的在于加深对其匹配原理的理解。如果仅从达到匹配目的观点看,可不必先进行计算,而是直接调节螺钉的位置和插入深度,并用测量放大器进行观测,直至达到匹配为止。
3.如前所述,喇叭天线与单螺钉调配器在结构上可能是一个整体。如果这样,那么,d1λgd2λgS向信号源M1g=1PO向负载M2图3-3
在测量线终端处所呈现的负载,就不单是喇叭天线本身的等效(输入)阻抗了,而是包含了单螺钉调配器那段波导的影响在内的总的阻抗(参见图3-2)。为方便起见,我们用总导纳(总阻抗的倒数)来确定螺钉的位置d,为此,应首先找到这个总导纳归一化值在导纳圆图上的位置,然后由此位置开始,沿等驻波比圆(s圆)逆时针转到g1的圆相交于两点,取其中电抗为负的点作为安置螺钉的位置,则距离d根据圆图的刻度就可求出。若由此而确定的d可能因其太小,而落不到单螺钉调配器的缝隙内,则可增加g/2的某个倍数,使d落入缝隙内。D定了之后,再调螺钉的插入深度直到匹配为止。总的导纳知道了,则喇叭本身的导纳也就可求了。顺便指出,如同在实验二中求负载阻抗那样,首先将测量线终端短路,取
某一电压(场强幅值)最小点(节点)作为终端的参考点,然后取下短路板,接上被测负载(现为喇叭天线和单螺钉调配器)出现了新的节点,两节点距离之差即为负载最近的电压节点的距离l1。知道了l1,则被测负载即可求出。但有时会出现上述节点处处相重合,即l10的情况,这说明被测负载的阻抗是一纯电阻性阻抗,其值为Zl
ZCs。
第二篇:西电微波技术虚拟实验报告_格式要求
实验报告格式要求
一、设计要求
即实验标题下的内容,包括设计何种电路、有何指标要求、测量哪些参数等。
二、实验仪器
硬件:PC机
软件:Microwave Office软件
三、设计步骤
简要的写明主要设计步骤,计算的参数,创建的电路图、测量图。具体的软件操作步骤不用写。
四、实验数据记录
表
1、表2的计算结果,软件仿真的所有结果,尤其是微带线电路优化后的尺寸。
五、结果分析
对仿真结果进行说明,是否符合设计要求?优化结果是否理想?哪些不理想?不理想的原因及解决的方法……
六、实验总结
两个软件的主要功能,对软件使用的掌握情况。
做了哪些实验内容,对相关理论知识的掌握。
有哪些提高、不足……
对本课程的建议、意见……
(注:报告的前5项仅写实验8的相关内容,第6项为整个课程的总结。报告手写、打印均可。)
第三篇:微波与天线总结
对称阵子天线:
构成:有两根粗线和长度都相同的导线构成,中间为俩个馈电端
原理: 若电线上的电流分布已知,则由电基本阵子的辐射场沿整个导线的积分,便得到对称振子的辐射场。实际上,西振子天线可看成是开路传输线逐渐张开而成,而其电流分布与无耗开路传输线的完全一致,即按正弦驻波分布。用途: 对称振子分为半波对称振子和全波对称振子,半波对称振子广泛的应用于短波和超短波波段,它既可以作为独立天线使用,也可以作为天线阵的阵元,在微波波段还可以作为抛物面天线的馈源。
特点: 方向性比基本振子的方向性稍强一些,平均特性阻抗Z越低R和X随频率的变化越缓慢,其频率特性越好。所以,欲展开对称振子的工作频带,常利用加粗振子直径的方法。当h=λ/4n时,其输入阻抗是一个不大的纯电阻具有很好的频率特性,也有利于同馈线匹配,而在并联谐振点附近是一个高阻抗且输入阻抗随频率变化剧烈,特性阻抗不好。
阵列天线:
构成: 将若干辐射单元按某种方式排列所构成的系统。构成天线阵地辐射单元,成为天线原或阵元
原理:天线的辐射场是各天线元所产生的矢量叠加,只要各天线元上的电流,振幅和相位分布满足适当的关系,就可以得到所需要的辐射特性 特点:天线阵的主瓣宽度和旁瓣电平是即相互依赖又相互对立的一对矛盾,天线阵方向图的主瓣宽度小,则旁瓣电平就高,反之,主瓣宽度大则旁瓣电平就低。均匀直线阵的主瓣很窄,但旁瓣数目多,电平高,二项式直线振的主瓣很宽旁瓣就消失了,旁瓣分散了天线的辐射能量,增加量接受的信噪比,但旁瓣又起到了压缩主瓣宽度的作用。
直立阵子天线:
构成: 垂直于地面或导电平面架设的天线称为直立阵子天性
原理: 单级天线可等效为一对对称振子,对称阵子可等效为一二元阵,但此时等效只是在地面或导体的上半空间成立。理想导电平面上的单级天线的辐射场可直接应用到自由空间对称振子的公式进行计算。
用途: 广泛应用于长,中,短波及超短波段。
特点: 当h《λ时辐射电阻很低。单级天线效率也很低改善方法是提高辐射电阻降低损耗电阻。
水平振子天线:
构成: 水平振子天线又称双级天线,阵子的两臂由单根或多股铜线构成,为了避免在拉线上产生较大感应电流,拉线的长度应较小,臂和支架采用高频绝缘子隔开,天线与周围物体要保持适当距离,馈线采用600Ω的平行双导线。
原理: 与直立天线的情况类似,无限大导电地面的影响可用水平阵子天线的镜像来代替,架设在理想导电地面上的水平振子天线的辐射场可以用该天线及其镜像所构成的二元阵来分析,但应注意该二元阵的天线元是同幅反相的。用途: 经常用于短波通信电视或其他无线电系统。
特点: 架设和馈电方便,地面电导率的变化对水平振子天线的影响较直立天线小,工业干扰大多是垂直极化波,因此,用水平振子天线可以减少干扰对接收的影响。
引向天线: 构成:又称为八木天线,它由一个有源振子及若干个无源振子组成,在无源振子中较长的一个为反射器,其余为引向器
用途:广泛用于米波,分米波的通信、雷达、电视及其它天线电流 原理:引向天线实际上也是一个天线阵,与前述天线相比不同的是它是对其中一个振子馈电,其余振子则是靠与馈电振子之间的近场耦合所产生的感应电流来激励的,而感应电流大小取决于振子的长度及其间距
特点:使天线的方向性增强,但由于各振子之间的相互影响又使天线的工作频带变窄,输入阻抗降低,不利于与馈线的匹配。
电视发射天线
特点:频率范围宽,覆盖面积大,有零辐射方向,天线及其电场平行于地面,为了扩大服务范围,发射天线必须家架在高大建筑的顶端或专用的电视塔上,这就要求天线必须承受一定的风荷,防雷等。还要求天线在水平面内无方向性。
移动通信基站天线
特点:有足够的机械强度和稳定性,垂直极化,根据组网方式的不同,如果是顶点激励,采用扇形天线,如果是中心激励采用全向天线,为了节省发射机功率,天线增益应尽可能的高,为了提高天线效率及带宽,天线与馈线应良好匹配
结构:VHF和UHF移动通信基站天线一般是有馈源和角形反射器俩部分组成的,为了获得较高的增益,馈源一般采用并馈共轴阵列和串馈共轴阵列两种形式,为了承受一定的风荷,反射器可以采用条形结构 用途:米波,分米波
特点:体积小,增益高,垂直极化,水平面内无方向性 螺旋天线;结构:讲导线绕制成螺旋形线图而构成的天线称为螺旋天线,通常它带有金属接地板,有同轴线馈电,同轴线的内导体与螺旋线相接,外导体与接地板相连
原理;由于法向模螺旋天线的电尺寸较小,其辐射场可以等效为电基本振子与磁基本振子,辐射场的叠加且它的电流,振幅相等,相位相同。
用途:法向模螺旋天线的辐射效率和增益都较低,主要用于超短波手持式通信机
行波天线:
用途:广泛应用于短波和超短波波段。
特点:具有较好的单向的辐射特性,较高的增益及较宽的带宽,但效率不高。原理:行波天线是由导线末端接匹配负载来消除反射波而构成的。构成:由导线和匹配构成。
宽频带天线:
特点:阻抗方向图等电特性在一倍频程或几倍频程内无明显变化。
原理;当工作频率变化时天线的尺寸随之改变即保持电尺寸不变则能在很宽频带范围内保持辐射特性。
结构:形状仅取决于角度与其他尺寸无关,具有终效应弱现象。用途:等角螺旋天线、对数周期天线在超短波和短波波段广泛应用
缝隙天线:
结构:在同轴线波导管或空腔谐振器的导体壁上开一条或数条窄缝是电磁波通过缝隙向外空间辐射而形成一种天线。
原理:对偶原理,理想缝隙天线的方向函数与同长度的对称振子的方向函数E面和H面相互交换。波导的内壁上有电流分布,管壁上的缝隙天线切割电流线,缝隙受到激励而向外产生辐射,形成波导缝隙天线。为加强缝隙天线的方向性,可以在波导上按一定规律开一系列尺寸相同的缝隙,构成波导缝隙阵。
特点:缝隙天线具有轮廓低、重量轻、加工简单、易于与物体共形、批量生产、电性能多样化、宽带和与有源器件和电路集成为统一的组件等诸多特点,适合大规模生产,能简化整机的制作与调试,从而大大降低成本。厚度很小,结构牢固,馈电方便,但容量不高,频带较窄。
用途:缝隙天线自上世纪中叶以来有了很大的发展,广泛用于地面、舰载、机载、导航等各个领域。由于缝隙阵列天线对天线口径面内的幅度分布容易控制,口径面利用率高,体积小,易于实现低或极低副瓣等特点,因而使其获得广泛使用。
微带天线:
结构: 由一块厚度远小于波长的戒指(称为介质基片)和覆盖在它上面的金属片构成的,其中完全覆盖介质板一片成为接地板,而尺寸可以和波长相比拟的另一篇称为辐射元,辐射元的形状可以是方形,矩形,圆形和椭圆形。
原理: 由于基片厚度h《λ场沿h方向均匀分布,在最简单的情况下,场沿宽度ω方向也没有变化而仅在长度方向上有变化,在两开路端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量的方向相反水平分量方向相同,因而在垂直于地板的方向,两水平分量电场所产生的远区场同相叠加,两垂直分量电场所产生的场反相相消,因此两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙即微带天线可以等效为由两个缝隙所构成的二元阵列。
特点: 体积小,重量轻,低剖面。波瓣较宽,方向系数较低,频带窄,损耗大交叉极化大,单个微带天线的功率容量小等
用途 广泛用于100MHz~50GHz的频率范围。
智能天线:
结构: 由天线阵和算法构成。是数字信号处理技术与天线有机结合的产物。原理: 它将每个用户信号分为D路(D为天线单元数),并分别以W11 W12…….Wmd加权,得到M*D路信号(M为用户数),然后将相应的M路信号以不同的加权系数组合而成,因此信号的波形是不同的,从而构成了M个信道方向图。
特点: 具有较高的接受灵敏度,使空分多址系统成为可能,消除在上下链路中的干扰,抑制多径衰落效应。
用途: 提高移动通信的性能。
旋转抛物面天线
结构 :由两部分组成,其一是抛物线绕其焦轴旋转而成的抛物反射面,反射面一般采用导电性能良好的金属或其他材料上敷以金属层制成,其二是置于抛物面焦点处的馈源。原理:几何光学反射定理,能量守恒定理.特点 :1张角ψ一定时,馈源方向函数Df(ψ)变化越快,方向图越窄,则口径场分布越不均匀,口径利用因数越低.2 馈源方向函数Df(ψ)一定时, 张角ψ越大, 则口径场分布越不均匀,口径利用因数越低..3张角ψ一定时,馈源方向函数Df(ψ)变化越快, 方向图越窄,则口径截获因数越高.馈源方向函数Df(ψ)一定时, 张角ψ越大, 则口径截获因数越高.4由于抛物面几乎不存在热损耗,即η≈1,所以G≈D.5抛物面天线的方向性很大程度上依赖于馈源.用途 :在通信,雷达和射电天文等系统中广泛应用.卡塞格伦天线
结构;由主反射面,副反射面和馈源三部分组成.主反射面是有焦点在F焦距为f的抛物面绕其焦轴旋转而成,副反射面是由一个焦点在F1另一个焦点在F2的双曲线饶其焦轴旋转而成,主副面的焦轴重合,馈源通常采用喇叭.位于实焦点F2上.原理 : 卡塞格伦天线可以用一个口径尺寸与原抛物面想同,但焦距放大了A倍的旋转抛物面天线来等效,且具有相同的场分布,这样就可以利用前面介绍的旋转抛物面天线的理论来分析卡塞格伦天线的辐射特性和各种电参数.特点 : A.由于天线有两个反射面,几何参数增多,便于按照各种需要灵活地进行设计。B.可以采用短焦距抛物面天线做主反射面,减小了天线的纵向尺寸。C.由于采用了副反射面,馈源可以按装在抛物面顶点的附近,使馈源和接收机之间的传输线缩短,减小了传输线损耗所造成的噪声。
用途: 主要用于卫星地面站,单脉冲雷达和射电天文等系统中
第四篇:HFSS微波仿真实验实验报告六合一x
肇庆学院12 通信 2 2 班
杨桐烁
201224124202
实验一
T T 形波导的内场分析和优化设计
实验目的1、熟悉并掌握 HFSS 的工作界面、操作步骤及工作流程。
2、掌握 T 型波导功分器的设计方法、优化设计方法和工作原理。
实验仪器
1、装有 windows 系统的 PC 一台 2、HFSS13.0 或更高版本软件 3、截图软件 T T 形波导的内场分析
实验原理
本实验所要分析的器件是下图所示的一个带有隔片的 T 形波导。其中,波导的端口 1 是信号输入端口,端口 2 和端口 3 是信号输出端口。正对着端口 1 一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口 1 传输到端口 2,从端口 1 传输到端口 3的信号能量大小,以及反射回端口 1 的信号能量大小。
实验步骤
1、新建工程设置:运行 HFSS 并新建工程、选择求解类型、设置长度单位 2、创建 T 形波导模型:创建长方形模型、设置波端口源励、复制长方体、合并长方体、创建隔片 3、分析求解设置:添加求解设置、添加扫频设置、设计检查 4、运行仿真分析 5、查看仿真分析计算结果 内场分析 结果
1、图形化显示 S 参数计算结果
图形化显示 S 参数幅度随频率变化的曲线 2、查看表面电场分布 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00Freq [GHz]0.130.250.380.500.630.75Y1TeeModalXY Plot 1ANSOFTCurve Infomag(S(Port1,Port1))Setup1 : Sweep1mag(S(Port1,Port2))Setup1 : Sweep1mag(S(Port1,Port3))Setup1 : Sweep1
表面场分布图 3、动态演示场分布图
T T 形波导的优化设计
实验原理
利用参数扫描分析效用。分析在工作频率为 10GHz 时,T 形波导 3 个端口的信号能量大小随着隔片位置变量 Offset 的变化关系。利用 HFSS 的优化设计效用,找出隔片的准确位置,使得在 10GHz 工作频点,T 形波导商品 3 的输出功率是端口 2 输出功率的两倍。
实验步骤
1、新建一个优化设计工程 2、参数扫描分析设置和仿真分析:添加参数扫描分析项、定义输出变量、运行参数扫描分析 3、优化设计:添加优化变量、添加目标函数、设置优化变量的取值范围、运行优化分析。
实验结果
1、创建功率分配随变量 Offset 变化的关系图
输出变量随变量 Offset 变化的关系图 分析:从上图所示的图可以看出,当变量 Offset 值逐渐变大时,即隔片位置向端口 2 移动时,端口 2 的输出功率逐渐减小,端口 3 的输出功率逐渐变大;当隔片位置变量 Offset 超过 0.3 英寸时,端口 1 的反射明显增大,端口 3 的输出功率开始减小。因此,在后面的优化设计中,可以设置变量Offset 优化范围的最大值为 0.3 英寸。同时,在 Offset=0.1 英寸时,端口 3 的输出功率约为 0.65,端口 2 的输出功率略大于 0.3,此处端口 3 的输出功率约为端口 2 输出功率的两倍。因此,在优化设计时,可以设置变量 Offset 的优化初始值为 0.1 英寸。另外,变量 Offset 优化范围的最小值可以取 0 英寸。
优化设计结果
0.00 0.20 0.40 0.60 0.80 1.00Offset [in]0.000.200.400.600.801.00powerpower range with offset HFSSDesign1 XY Plot 4Curve Infopower11Setup1 : LastAdaptiveFreq=“10GHz”power21Setup1 : LastAdaptiveFreq=“10GHz”power31Setup1 : LastAdaptiveFreq=“10GHz”
实验总结
通过本次 HFSS 天线仿真实验,使我更加真实、贴切的了解天线的原理和用途。生活中我们可以见到各种奇形怪状的天线,却不知其意义何在。在这次实验过程中,我不停的操作、翻阅资料、上网查阅文献,对天线仿真设计的各个环节有了一个较为清楚的认识,对天线的各种参数也有了具体的理解,这些东西对以后的相关学习和研究打下了基础。
实验二
S HFSS 仿真对称振子天线
实验目的1、熟悉并掌握 HFSS 的工作界面、操作步骤及工作流程。
2、掌握对称振子天线的设计方法、优化设计方法和工作原理。
实验仪器
1、装有 windows 系统的 PC 一台 2、HFSS13.0 或更高版本软件 3、截图软件 实验步骤
1、新建一个优化设计工程 2、参数扫描分析设置和仿真分析:添加参数扫描分析项、定义输出变量、运行参数扫描分析 3、优化设计:添加优化变量、添加目标函数、设置优化变量的取值范围、运行优化分析。
实验数据
表 1 对称振子天线三维体模型 名称 形状 顶点(x,y,z)(mm)尺寸(mm)材料 arm1 圆柱体(0,0,0.5)radius=$r,height=$l Pec arm2 圆柱体(0,0,-0.5)radius =$r,height=-$l Pec airbox 长方体(-$lbd/3-$r,-$lbd/3-$r,-$lbd/3-$l)xsize=2*$lbd/3+2*$r ysize=2*$lbd/3+2*$r zsize=2*$lbd/3+2*$l vacuum
表 2 对称振子天线二维面模型 名称 所在面 形状 顶点(mm)尺寸(mm)边界/源 feed xz 矩形(-$r,0,-0.5)dx=2*$r, dz=1 Lumped port
表 3 变量表 变量名 变量初始值(mm)
变量值(mm)
$lbd
$l 25 25(50, 75, 100)$r 1 1(2, 3, 4)实验步骤
0 2 4 6 8 10 12 14Evaluation0.000.130.250.370.500.63Cost
1、新建一个优化设计工程 2、参数扫描分析设置和仿真分析:添加参数扫描分析项、定义输出变量、运行参数扫描分析 3、优化设计:添加优化变量、添加目标函数、设置优化变量的取值范围、运行优化分析。
实验步骤 1.打开 HFSS,新建工程,将工程保存为 dipole。设置求解类型。设置单位。画对称振子的一支臂,形状为圆柱体,命名为 arm1,材料设置为理想导体,半径设置为变量$r,臂长设置为变量$l。画馈电模型,形状为 zx 面上的矩形,命名为 feed,设置为 lumped port 激励方式。画辐射箱,命名为 airbox,形状为长方体,材料为真空,边界条件为 radiation。设置求解频率 3GHz,扫频 1-5GHz。检查及运行计算 9 画电流分布 10 画 S 参数曲线 11 画阻抗曲线 12 画方向图 13 扫描变量$l 实验结果
图 airbox 及天线
图 振子上电流幅度分布
图 |S 11 |曲线
图 24 阻抗曲线。
图 29 二分之一波长对称振子三维增益图
图 二分之一波长对称振子 E 面方向图
图 S 参数随$r 变化曲线
图 36 $r=2mm,S 参数随$l 变化曲线
图 39 扫描变量$l 得到的方向图
实验三
HFSS 微带天线仿真设计
实验目的1、熟悉并掌握 HFSS 的工作界面、操作步骤及工作流程。
2、掌握微带天线仿真设计原理和方法。
实验仪器
1、装有 windows 系统的 PC 一台 2、HFSS13.0 或更高版本软件 3、截图软件 实验原理 微带天线的辐射机理实际上是高频的电磁泄漏。一个微波电路如果不是被导体完全封闭,电路中的不连续处就会产生电磁辐射。例如微带电路的开路端,结构尺寸的突变、折弯等不连续处也会产生电磁辐射(泄漏)。当频率较低时,这些部分的电尺寸很小,因此电磁泄漏小;但随着频率的增高,电尺寸增大,泄漏就大。再经过特殊设计,即放大尺寸做成贴片状,并使其工作在谐振状态。辐射就明显增强,辐射效率就大大提高,而成为有效的天线。
实验步骤
1、创建微带天线模型:设置默认的长度单位、建模相关选项设置、添加和定义设计变量、创建介质基片、创建辐射贴片、创建参考地、创建同轴馈线的内芯、创建信号传输端口面 2、设置边界条件和激励:设置边界条件、设置辐射边界条件、设置端口激励 3、求解设置:求解频率和网格剖分设置、扫频设置 4、设计检查和运行仿真分析:设计检查、运行仿真分析 5、参数扫描分析:添加参数扫描分析项、运行参数扫描分析、查看分析结果 6、查看仿真分析结果 实验结果
1、查看天线回波损耗
分析:从图中可以看出设计的微带天线谐振频率在 2.45GHz 附近,且在 2.45GHz 频点上的回波损耗值为 20.7dB 左右。
2、分析谐振频率随辐射贴片长度 L0 的变化关系
分析:从图中可以看出,随着长度L0值的增加,天线的谐振频率逐渐降低。当L0=27.5mm时,谐振频率为2.44GHz;当L0=28mm时,谐振频率为2.48GHz;所以 2.45GHz 谐振频率对应的 L0 长度介于 27.5mm~28.mm。
3、分析谐振频率随辐射贴片长度 W0 的变化关系
分析:从上图所示分析结果可以看出,辐射贴片宽度 W0 由 30 mm 变化到 40 mm 时,天线的谐振频率变化很小,即天线的谐振频率不随辐射贴片宽度变化而变化。
实验总结
通过本次 HFSS 天线仿真实验,使我更加真实、贴切的了解天线的原理和用途。生活中我们可以见到各种奇形怪状的天线,却不知其意义何在。在这次实验过程中,我不停的操作、翻阅资料、上网查阅文献,对天线仿真设计的各个环节有了一个较为清楚的认识,对天线的各种参数也有了具体的理解,这些东西对以后的相关学习和研究打下了基础。
1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50Freq [GHz]-25.00-20.00-15.00-10.00-5.000.00dB(S(1,1))HFSSDesign1XY Plot 1ANSOFTCurve InfodB(S(1,1))Setup1 : Sweep1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50Freq [GHz]-35.00-30.00-25.00-20.00-15.00-10.00-5.000.00dB(S(1,1))HFSSDesign1XY Plot 2ANSOFTCurve InfodB(S(1,1))Setup1 : SweepL0=“26mm”dB(S(1,1))Setup1 : SweepL0=“26.5mm”dB(S(1,1))Setup1 : SweepL0=“27mm”dB(S(1,1))Setup1 : SweepL0=“27.5mm”dB(S(1,1))Setup1 : SweepL0=“28mm”dB(S(1,1))Setup1 : SweepL0=“28.5mm”1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50Freq [GHz]-40.00-35.00-30.00-25.00-20.00-15.00-10.00-5.000.00dB(S(1,1))HFSSDesign1XY Plot 3ANSOFTCurve InfodB(S(1,1))Setup1 : SweepL0=“28mm” W0=“30mm”dB(S(1,1))Setup1 : SweepL0=“28mm” W0=“32mm”dB(S(1,1))Setup1 : SweepL0=“28mm” W0=“34mm”dB(S(1,1))Setup1 : SweepL0=“28mm” W0=“36mm”dB(S(1,1))Setup1 : SweepL0=“28mm” W0=“37.26mm”dB(S(1,1))Setup1 : SweepL0=“28mm” W0=“38mm”dB(S(1,1))Setup1 : SweepL0=“28mm” W0=“40mm”
实验四
半波偶极子天线仿真实验报告
实验目的1、学会简单搭建天线仿真环境的方法,主要是熟悉日 HFSS 软件的使用方法 2、了解利用 HFSS 仿真软件设计和仿真天线的原理、过程和方法 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith 圆图特性、方向图特性等 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法 实验仪器
1、装有 windows 系统的 PC 一台 2、HFSS 15.0 3、截图软件 实验原理
首先明白一点:半波偶极子天线就是对称阵子天线。
2, 对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为。, 长度为 I。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度 L=21。对称振
子的长度与波长相比拟,本身己可以构成实用天线。
3, 在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦 律分布。取图 1 的坐标,并忽略振子损耗,则其电流分布可以表示为:
式中,Im 为天线上波腹点的电流;IC=W}C 为相移常数、根据正弦分布的特点, 对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长 就会出现反相电流。
4, 在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流 I(z), 长度为 dz 的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子 的辐射场是这些电流元辐射场之矢量和。
图 2 对称振子辐射场的计算 如图 2 所示,电流元 I(z)所产生的辐射场为
5、方向函数
实验步骤
1、设计变量(以表格的形式列出来)
设置求解类型为 Driven Model 类型,并设置长度单位为毫米。提前定义对称阵子天线的基本参数并初始化、创建偶极子天线模型,即圆柱形的天线模型。(模型截图贴在下面)
其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。设置端口激励(附以截图)
半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于 YZ 面的矩形面作为激励端口平面。
4、设置辐射边界条件(截图)
要在 HfSS 中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿 Z 轴
放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。
外加激励求解设置分析的半波偶极子天线的中心频率在 3G 日 z,同时添加 2.5 G 日:^3.5 G 日:频段内的扫频设置,扫频类型为快速扫频。
6、设计检查和运行仿真计算 7、HFSS 天线问题的数据后处理(截图,并做相应的说明)具体在实验结果中阐释。
实验结果
1、回波损耗 S11
回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。
图中所示是在 2.5 G 日 z ^3.5 G 日 z 频段内的回波损耗,设计的偶极子天线中心频率约为 3GHz, S11<-10dBd 的相对带宽 BW=(3.25-2.775)/3*1000/=15.83% 2、电压驻波比
驻波比,一般指的就是电压驻波比,是指驻波的电压峰值与电压谷值之比。
由图可以看到在 3G 赫兹附近时,电压驻波比等于 1,说明此处接近行波,传输特性比较理想。
3,smith 圆图史密斯圆图是一种计算阻抗、反射系数等参量的简便图解方法。采用双线性变换, 将 z 复平面上。实部 r=常数和虚部 x=常数两族正交直线变化为正交圆并与:反射系数|G|=常数和虚部 X=常数套印而成。
从 smith 圆图可以看到,在中心频率 3G 赫兹时的归一化阻抗约为 1,说明端口的阻抗特性匹配良好。
4,输入阻抗传输线、电子电路等的输入端口所呈现的阻抗。实质上是个等效阻抗。只有确定了输入阻抗,才能进行阻抗匹配。
图中所示的输入阻抗分别为实部和虚部,在中心频率 3G 赫兹时,输入阻抗比较的理想,容易实现匹配。
5、方向图
方向图是方向性函数的图形表示,他可以形象描绘天线辐射特性随着空间方向坐标的变化关系。辐射特性有辐射强度、场强、相位和极化。通常讨论在远场半径为常数的大球面上,天线辐射(或接收)的功率或者场强随位置方向坐标的变化规律,并分别称为功率方向图和场方向图。天线方向图是在远场区确定的,所以又叫远场方向图。
电场方向图:
由图可以看到,电场方向以 Z 轴为对称轴,在 XOY平面上电场最强,且沿四周均匀辐射。但沿着 Z 轴方向电场强度很弱。
磁场方向图:
磁场方向图在 XOY平面上接近一个圆,虽然看上去有些误差。说明磁场在 XOY平面上辐射较为均匀。
三维增益方向图: 这张图可以很具体的看出半波偶极子天线沿着 Z 轴对称辐射的情况。
6、其他参数 利用 HFSS 软件仿真还可以得到天线在该辐射表面上得最大辐射强度、方向性系数、最 大强度及其所在方向等参数。
实验分析
设计一个天线,无论是作为发射天线还是接收天线,我们都很关心其方向参数、输入阻抗参 数、增益参数、频带宽度等参数。这里也主要就上诉几个参数来讨论半波偶极子天线的优缺 点。
1、半波偶极子天线在轴向无辐射 2、半波偶极子天线的辐射与其电长度密切相关。当电长度小于 0.5 时,波瓣宽度最窄,在 垂直与轴向的平面内辐射最强,随着电长度的增加,开始出现副瓣,主瓣宽度变宽,最
大辐射方向发生偏移。
3、半波偶极子天线的输入阻抗受频率影响很剧烈,说明宽频带时其较难实现负载匹配,所以相对应的频带宽度也较窄。
4、在谐振频率附近时,我们从图中可以看到,天线的输入阻抗接近传输线的特性阻抗,实现匹配较易,而且在中心频率附近,电波的传输特性也最好,从而可以实现较大效率的功率传输。
5、通过对实验得到结果的分析,不难发现,半波偶极子天线的诸多特性与电长度关系很大,所以可以通过调整天线的电长度来实现不同效用和要求的半波偶极子天线应用。
6、最后还要补充一点:半波偶极子的输入阻抗还与天线的粗细有关。
实验总结
通过本次日「SS 天线仿真实验,使我更加真实、贴切的了解天线的原理和用途。生活中我们可以见到各种奇形怪状的天线,却不知其意义何在。在这次实验过程中,我不停的操作、翻阅资料、上网查阅文献,对天线仿真设计的各个环节有了一个较为清楚的认识,对天线的各种参数也有了具体的理解,这些东西对以后的相关学习和研究打下了基础。
另外,这次实验中我感觉较难的部分在与如何通过确定一种具体天线的参量模型来模拟设计天线模型,来仿真验证天线特性。
实验五
微带犬线
实验目的1、熟悉并掌握 HFSS 的工作界面、操作步骤及工作流程。
2、掌握微带犬线仿真设计原理和方法。
实验仪器
1、装有 windows 系统的 PC 一台 2、HFSS13.0 或更高版本软件 3、截图软件
实验原理
微带犬线的概念首先是由Deschamps于1953年提出来的,它是在一块厚度远小于工作波长的介质基片的一面敷以金属辐射片,一面全部敷以金属薄层作接地板而成。辐射片可以根据不同的要求设计成各种形状·。微带天线由于具有质量轻、休积小、易于制造等优点,现今已经广泛应用于个人无线通信中。1 微带天线结构
是一个简单的微带贴片天线的结构示意图,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度 L,辐射元的宽度W,、介质层的厚度 h、介质的相对介电常数拭和损耗正切阶次介质层的长度 LG 和宽度 WG
如果介质基片中的场同时沿宽度和长度方向变化,这时微带天线应该用辐射贴片周用的 4 个缝隙的辐射来等效。2 微带天线的馈电
微带天线有多种馈电方式,如微带线馈电、同轴线馈电、藕合馈电 C Coupled Feed)和缝 G}!馈电(Slot Feed)等,其中最常用的是微带线馈电和同轴线馈电两种馈电方式。本章将要设计的矩形微带贴片天线采用的是同轴线馈电。
同轴线锁电又称为背馈,『已是将同轴插座安装在接地板上,同轴线内导体穿过介质基片接在辐射贴 l}.f:.,如图 10.3 所示,寻取正确的馈电点的位置就可以获得良好的匹配。
3 矩形微带天线的特性参数 1.微带辐射贴片尺寸估算
设计微带大线的第·步是选择合适的介质基片,然后再估算出辐射贴片的尺寸。假设介质的介电常数为Er,对一于工作频率f的矩形微带大线,’可以用 F 式没计出高效率辐射贴片的宽度*,即:
式中,c 是光速。
辐射贴片的长度一般取为儿 12,这里,凡是介质内的泞波波长,即:
考虑到边缘缩短效应后,实际_卜的辐射单元长度 L 应为:
式中,se 是有效介电常数,鱿是等效辐射缝隙长度,可以分别用下式计算: 2.同轴馈点位置的估算
对于同轴线馈电的微带贴片天线,在确定了贴片长度 L 和宽度 w 之后,还需要确定同轴线馈点的位置,馈点的位置会影响天线的输入阻抗。在主模 TM 10 工作模式下,在宽度 w 方向上电场强度不变,因此馈电点在宽度、方向的位移对输入阻抗的影响很小,但在宽度方向卜偏离中心位置时,会激发TM 10-模式,增加天线的交叉极化辐射,因此宽度方向r.馈电点的位置一般取在中心点(y=07}馈电点在矩形辐射贴片长度L方向边缘处((x= }L12)的输入阻抗最高,约为 t Oa 到 400 欧姆之间,而在辐射贴片的几何中心点(x!0} y=0)处的输入阻抗则为零,因此在长度 L 方向上,从辐射贴片的几何中心到两侧输入阻抗由零逐渐增大:对于如图 10.3 所示的同轴线馈电的微带贴片天线,由下式可以近似 v}一算出输入阻抗为 50 欧姆时的馈电点的位置:
3.辐射场 如前所述,矩形微带天线可以视作一段长 L 为 iJ2 的低阻抗微带传输线,它的辐射场被认为是由传输线两端开路处的缝隙所形成的。因此,矩形微带天线可以等效为长 w.宽方、间距为 L 的二元缝隙天线阵。
单个缝隙天线的方向性函数为:
因此,矩形微带天线的辐射场只需在单缝隙大线的表达式中乘以二元阵的阵因子就可以了。这样,矩形微带天线的方向性函数可以表示为:
工程设计中关心的多是 F 面(=90)和 H 面(φ=90)方向图,于是由式(10.1.10)可得 E 面的力向性函数为:
考虑到 kh<<1 ,则式(4-1-9)可以近似写为:
H 面的方向性函数为:
4.方向性系数 根据方向性系数的定义,可以给出微带大线的方向性系数为:
本章设计的矩形微带人线工作于 ISM 颂段,其中心频率为 2.45GHz;无线局域网(WLAN),蓝牙、ZigBee 等无线网络均 1.作在该频段上。介质摧片采用厚度为 1.6mm 的 FIt4 环氧树脂(FR4 Epoxy)板,其相对介质常数ε=4.4,天线使用 50 欧姆同轴线馈电。
下面根据 10.1 节给出的推导公式来计算微带天线的几何尺寸,包括贴片的长度 L,宽度 W 和同轴线愤点的位置 1.矩形贴片的宽度 W 把 c=3.Ox10^8m/s,f0=2.45CrHz, ε=4.4 代入式(10-1-1)可以计算出微带天线矩形贴片的宽度,2.有效介电常数& 把 h=1.6mm, W= 37.26mm, ε=4.4 代入式(10-1-4),可以计算出有效介电常数,即 3.辐射缝隙的长度△L 把 h=1.6mm,W=37.26mm, ε=4.08 代入式(10-1-5),可以计算出微带天线辐射缝隙的一长度, 4.矩形贴片的长度△L
把 c=3.0x10^8m/s.f0=2.45GHz,=4.}8, △L=1.12mm 代入式〔10-1-3),可以计算出微带天线 矩形贴片的长度,即
5.同轴线馈点的位置
把ε=4.4 ,W=37.26mm, L=28.C37mm 代入式(10-1-7)和式{10-1-6)计算出 50 欧姆匹配点的近似位置,即 实验步骤
1.新建工程 2.添加自定义变量 3.设计建模 4.设置边界条件 5.设置端口激励 6.求解设置 7.设计检查和运行仿真计算 实验结果及其截图: :
1.原实验结果
(1)建模完成:
(2).确认设计,通过 Validation Check:
(3).查看天线的谐振频率:
(4)参数扫描分析寻找谐振频率
(5)调节阻抗获得最佳匹配性能
实验感想:
通过本次实验我更熟练的掌握 HFSS 软件的操作及对天线设计的要求
实验六
HFSS 谐振腔仿真分析
实验目的1、熟悉并掌握 HFSS 的工作界面、操作步骤及工作流程。
2、掌握谐振腔仿真分析。
实验仪器
1、装有 windows 系统的 PC 一台 2、HFSS13.0 或更高版本软件 3、截图软件 实验原理
一般的微波腔体谐振器是由导体制成的封闭的空腔,电磁波在其中连续反射,如果模式和频率合适,就会产生驻波,即发生谐振现象。由于导体空腔谐振器是封闭系统,全部电磁场能量被限制在腔体内部,腔体本身无辐射损耗,且谐振腔属于分布参数电路,电路的表面积增加使其导体损耗减小,因此谐振腔的品质因数较集总参数谐振电路高得多。
实验步骤
1、创建圆形谐振腔模型:设置默认的长度单位、建模相关选项设置、创建圆形谐振腔体模型、2、边界条件和激励:
3、求解设置 4、设计检查和运行仿真分析 5、参数扫描分析
实验结果
1、谐振频率和品质因数 Q
2、腔体内部电磁场的分布 绘制模式 1 在腔体横截面上的电场和磁场分布
电场分布
磁场分布 绘制模式 1 在腔体垂直截面上的电场和磁场分布
电场分布
磁场分布 绘制模式 2 在腔体横截面上的电场和磁场分布
电场分布
磁场分布
绘制模式 2 在腔体垂直截面上的电场和磁场分布
电场分布
磁场分布
参数扫描分析
模式 1 和模式 2 的频率随变量 Height 的变化曲线 分析:从上图分析结果可以看出,随着介质圆柱的逐渐升高,模式 1 和模式 2 的谐振频率逐渐降低,通过改变介质圆柱的高度即可以改变圆形腔体内部的谐振频率。
实验总结
通过本次 HFSS 天线仿真实验,使我更加真实、贴切的了解天线的原理和用途。生活中我们可以见到各种奇形怪状的天线,却不知其意义何在。在这次实验过程中,我不停的操作、翻阅资料、上网查阅文献,对天线仿真设计的各个环节有了一个较为清楚的认识,对天线的各种参数也有了具体的理解,这些东西对以后的相关学习和研究打下了基础。
科教兴国
0.00 2.50 5.00 7.50 10.00 12.50 15.00Height [mm]3.00E+0094.00E+0095.00E+0096.00E+0097.00E+0098.00E+0099.00E+0091.00E+0101.10E+0101.20E+010Y1CavityXY Plot 1ANSOFTCurve Infore(Mode(1))Setup1 : LastAdaptivere(Mode(2))Setup1 : LastAdaptive
第五篇:微波简介
微波
微波是指频率为0.3GHz~300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在0.1毫米~1米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性。微波的基本性质通常呈现为秔透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是秔越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。目录
1词语概念 ▪ 基本信息
▪ 基本解释
▪ 引证解释
2微波波长 3微波性质 ▪ 秔透性
▪ 选择性加热
▪ 热惯性小
▪ 似光性和似声性
▪ 非电离性
▪ 信息性
4微波产生
5微波萃取原理 6热效应 7非热效应 8加热原理 9杀菌机理 10其它应用
1词语概念编辑 基本信息 词目:微波 拼音:wēibō
注音:ㄨㄟ ㄅㄛ 反义词: 巨浪 基本解释
1、[ripple]∶微小的波纹;
2、[microwave]∶指波长在0.1mm~1m之间无线电波。引证解释
1.微小的波浪。汉刘向《新序·杂事二》:“引纤缴,扬微波,折清风而殒。” 唐许浑《泛五云溪》诗:“急濑鸣车轴,微波漾钓筒。” 宋朱熹《喜晴》诗:“冲颷动高柳,渌水澹微波。”峻青《秓色赋·海娘娘》:“每当晴朗的早晨或是静谧的月夜,海上风平浪静,微波不兴。” 2.犹余波。汉司马相如《封禅文》:“俾万世得激清流,扬微波,蜚英声,腾茂实。” 南朝 梁 锺嵘 《诗品》卷上:“ 永嘉时,贵 黄 老,稍尚虚谈。于时篇什,理过其辞,淡乎寡味,爰及 江 表,微波尚传。” 卷盦 《<蔽庐丛志>序》:“景丛志而仰止,羗寄意於微波。” 3.指女子的眼波。三国 魏曹植《洛神赋》:“无良媒以接懽兮,托微波而通辞。” 清黄遵宪《都踊歌》:“中有人兮通微波,荷荷!贻我钗鸾兮餽我翠螺,荷荷!”高旭《赠沉孝则》诗:“惆怅佳人留片影,愿将心事托微波。”
4.物理学名词。指波长较短的电磁波。如:无线电通信中指波长在1毫米至十米之间的电磁波。[1] 2微波波长编辑
微波的频率在300MHz-300GHz之间,波长在1米(不含1米)到0.1毫米之间,是分米波、厘米波、毫米波和亚毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频无线电波”。微波作为一种电磁波也具有波粒二象性。微波量子的能量为1 99×l0-25~ 1〃99×10-22焦耳。3微波性质编辑
微波的基本性质通常呈现为秔透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是秔越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点: 秔透性
微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的秔透性。微波透入介质时,由于微波能与介质发生一定的相互作用,以微波频率2450兆赫兹,使介质的分子每秒产生24亿五千万次的震动,介质的分子间互相产生摩擦,引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。选择性加热
物质吸收微波的能力,主要由其介质损耗因数来决定。介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。物质不同,产生的热效果也不同。水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。因此,对于食品来说,含水量的多少对微波加热效果影响很大。热惯性小
微波对介质材料是瞬时加热升温,升温速度快。另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。似光性和似声性
微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。使得微波的特点与几何光学相似,即所谓的似光性。因此使用微波工作,能使电路元件尺寸减小;使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。例如微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似与声学喇叭,萧与笛;微波谐振腔类似于声学共鸣腔 非电离性
微波的量子能量还不够大,不足与改变物质分子的内部结构或破坏分子之间的键(部分物质除外:如微波可对废弃橡胶进行再生,就是通过微波改变废弃橡胶的分子键)。再有物理学之道,分子原子核在外加电磁场的周期力作用下所呈现的许多共振现象都发生在微波范围,因而微波为探索物质的内部结构和基本特性提供了有效的研究手段。另一方面,利用这一特性,还可以制作许多微波器件 信息性
由于微波频率很高,所以在不大的相对带宽下,其可用的频带很宽,可达数百甚至上千兆赫兹。这是低频无线电波无法比拟的。这意味着微波的信息容量大,所以现代多路通信系统,包括卫星通信系统,几乎无例外都是工作在微波波段。另外,微波信号还可以提供相位信息,极化信息,多普勒频率信息。这在目标检测,遥感目标特征分析等应用中十分重要 4微波产生编辑
微波能通常由直流电或50Hz交流电通过一特殊的器件来获得。可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。在电真空器件中能产生大功率微波能量的有磁控管、多腔速调管、微波三、四极管、行波管等。在微波加热领域特别是工业应用中使用的主要是磁控管及速调管。5微波萃取原理编辑
模拟的有限孙宙微波背景辐射图象
利用微波能来提高萃取率的一种最新发展起来的新技术。它的原理是在微波场中,吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到介电常数较小、微波吸收能力相对差的萃取剂中;微波萃取具有设备简单、适用范围广、萃取效率高、重现性好、节省时间、节省试剂、污染小等特点。除主要用于环境样品预处理外,还用于生化、食品、工业分析和天然产物提取等领域。在国内,微波萃取技术用于中草药提取这方面的研究报道还比较少。
微波萃取的机理可从以下3个方面来分析:①微波辐射过程是高频电磁波秔透萃取介质到达物料内部的微管束和腺胞系统的过程。由于吸收了微波能,细胞内部的温度将迅速上升,从而使细胞内部的压力超过细胞壁膨胀所能承受的能力,结果细胞破裂,其内的有效成分自由流出,并在较低的温度下溶解于萃取介质中。通过进一步的过滤和分离,即可获得所需的萃取物。②微波所产生的电磁场可加速被萃取组分的分子由固体内部向固液界面扩散的速率。例如,以水作溶剂时,在微波场的作用下,水分子由高速转动状态转变为激发态,这是一种高能量的不稳定状态。此时水分子或者汽化以加强萃取组分的驱动力,或者释放出自身多余的能量回到基态,所释放出的能量将传递给其他物质的分子,以加速其热运动,从而缩短萃取组分的分子由固体内部扩散至固液界面的时间,结果使萃取速率提高数倍,并能降低萃取温度,最大限度地保证萃取物的质量。③由于微波的频率与分子转动的频率相关连,因此微波能是一种由离子迁移和偶极子转动而引起分子运动的非离子化辐射能,当它作用于分子时,可促进分子的转动运动,若分子具有一定的极性,即可在微波场的作用下产生瞬时极化,并以24〃5亿次/s的速度作极性变换运动,从而产生键的振动、撕裂和粒子间的摩擦和碰撞,并迅速生成大量的热能,促使细胞破裂,使细胞液溢出并扩散至溶剂中。在微波萃取中,吸收微波能力的差异可使基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使被萃取物质从基体或体系中分离,进入到具有较小介电常数、微波吸收能力相对较差的萃取溶剂中。〖图片说明:模拟的有限孙宙微波背景辐射图象,匹配的圆圈上具有相同的冷热分布。〗 6热效应编辑
微波对生物体的热效应是指由微波引起的生物组织或系统受热而对生物体产生的生理影响。热效应主要是生物体内有极分子在微波高频电场的作用下反复快速取向转动而摩擦生热;体内离子在微波作用下振动也会将振动能量转化为热量;一般分子也会吸收微波能量后使热运动能量增加。如果生物体组织吸收的微波能量较少,它可借助自身的热调节系统通过血循环将吸收的微波能量(热量)散发至全身或体外。如果微波功率很强,生物组织吸收的微波能量多于生物体所能散发的能量,则引起该部位体温升高。局部组织温度升高将产生一系列生理反应,如使局部血管扩张,并通过热调节系统使血循环加速,组织代谢增强,白细胞吞噬作用增强,促进病理产物的吸收和消散等。7非热效应编辑
微波的非热效应是指除热效应以外的其他效应,如电效应、磁效应及化学效应等。在微波电磁场的作用下,生物体内的一些分子将会产生变形和振动,使细胞膜功能受到影响,使细胞膜内外液体的电状况发生变化,引起生物作用的改变,进而可影响中枢神经系统等。微波干扰生物电(如心电、脑电、肌电、神经传导电位、细胞活动膜电位等)的节律,会导致心脏活动、脑神经活动及内分泌活动等一系列障碍。对微波的非热效应,人们还了解的不很多。当生物体受强功率微波照射时,热效应是主要的(一般认为,功率密度在在10mW/cm2者多产生微热效应。且频率越高产生热效应的阈强度越低);长期的低功率密度(1 m W/cm2 以下)微波辐射主要引起非热效应〃 8加热原理编辑
微波是频率在300兆赫到300千兆赫的电波,被加热介质物料中的水分子是极性分子。它在快速变化的高频电磁场(微波)作用下,其极性取向将随着外电场的变化而变化。造成水分子的自旋运动的效应,此时微波场的场能转化为介质内的热能,使物料温度升高,产生热化等一系列物化过程而达到微波加热干燥的目的。[2] 9杀菌机理编辑
微波杀菌是利用了电磁场的热效应和生物效应的共同作用的结果。微波对细菌的热效应是使蛋白质变化,使细菌失去营养,繁殖和生存的条件而死亡。微波对细菌的生物效应是微波电场改变细胞膜断面的电位分布,影响细胞膜周围电子和离子浓度,从而改变细胞膜的通透性能,细菌因此营养不良,不能正常新陈代谢,细胞结构功能紊乱,生长发育受到抑制而死亡。此外,微波能使细菌正常生长和稳定遗传繁殖的核糖核酸[RNA]和脱氧核糖核酸[DNA],是由若干氢键松弛,断裂和重组,从而诱发遗传基因秕变,或染色体畸变甚至断裂。10其它应用编辑
微波波长约在1m~0.1mm(相应频率约为300MHz到300GHz)之间的电磁波。这段电磁频谱包括分米波、厘米
24GHZ雷达传感器
波和毫米波等波段。在雷达和常规微波技术中,常用拉丁字母代号表示更细的波段划分。
以上关于微波的波长或频率范围,是一种传统上的约定。从现代微波技术的发展来看,一般认为短于1毫米的电磁波(即亚毫米波)属于微波范围,而且是现代微波研究的一个重要领域。
从电子学和物理学的观点看,微波这段电磁谱具有一些不同于其他波段的特点。微波在电子学方面的特点表现在它的波长比地球上很多物体和实验室中常用器件的尺寸相对要小很多,或在同一量级。这和人们早已熟悉的普通无线电波不同,因为普通无线电波的波长远大于地球上一般物体的尺寸。当波长远小于物体(如飞机、船只、火箭、建筑物等)的尺寸时,微波的特点和几何光学的相似。利用这个特点,在微波波段能制成高方向性的系统(如抛物面反射器)。当波长和物体(如实验室中的无线电设备)的尺寸有相同量级时,微波的特点又与声波相近,例如微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似于喇叭、箫和笛;谐振腔类似于共鸣箱等。波长和物体尺寸在同一量级的特点,提供了一系列典型的电磁场边值问题。
在物理学方面,分子、原子与核系统所表现的许多共振现象都发生在微波的范围,因而微波为探索物质的基本特性提供了有效的研究手段。
由于这些特点,微波的产生、放大、发射、接收、传输、控制和测量等一系列技术都不同于其他波段(见微波电子管、微波测量等)。
微波成为一门技术科学,开始于20世纪30年代。微波技术的形成以波导管的实际应用为其标志。若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。
在第二次世界大战中,微波技术得到飞跃发展。因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微
微波传感器
波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。
微波振荡源的固体化以及微波系统的集成化是现代微波技术发展的两个重要方向。固态微波器件在功率和频率方面的进展,使得很多微波系统中常规的微波电子管已为或将为固体源所取代。固态微波源的发展也促进了微波集成电路的研究。
频率不断向更高范围推进,仍然是微波研究和发展的一个主要趋势。60年代激光的研究和发展,已越过亚毫米波和红外之间的间隙而深入到可见光的电磁频谱。利用常规微波技术和量子电子学方法,已能产生从微波到光的整个电磁频谱的辐射功率。但在毫米波-红外间隙中的某些频率和频段上,还不能获得足够用于实际系统的相干辐射功率。
微波的发展还表现在应用范围的扩大。微波的最重要应用是雷达和通信。雷达不仅用于国防,同时也用于导航、气象测量、大地测量、工业检测和交通管理等方面。通信应用主要是现代的卫星通信和常规的中继通信。射电望远镜、微波加速器等对于物理学、天文学等的研究具有重要意义。毫米波微波技术对控制热核反应的等离子体测量提供了有效的方法。微波遥感已成为研究天体、气象和大地测量、资源勘探等的重要手段。微波在工业生产、农业科学等方面的研究,以及微波在生物学、医学等方面的研究和发展已越来越受到重视(见微波应用、微波能应用、微波医学应用等)。
微波与其他学科互相渗透而形成若干重要的边缘学科,其中如微波天文学、微波气象学、微波波谱学、量子电动力学、微波半导体电子学、微波超导电子学等,已经比较成熟。微波声学的研究和应用已经成为一个活跃的领域。微波光学的发展,特别是70年代以来光纤技术的发展,具有技术变革的意义(见微波和射频波谱学)。
常用的无线传输介质是微波、激光和红外线,通信介质也称为传输介质,用于连接计算机网络中的网络设备,传输介质一般可分为有线传输介质和无线传输介质!
从理论上说,微波可以充当一种武器,打击任何电子系统,让汽车、飞机和核电站陷入瘫痪。此外,微波武器还能在不导致伤亡情况下让人产生灼痛感,可用于驱散人群。[3] 控导波管上安装的发射器。电磁铁施加器(空腔)内的波导结构是来自于能量耦合。反射的电磁能量是依赖于的空腔的尺寸和介电加热的加热产品。通过使用调谐器的反射的电磁能量的量可以被最小化,以提高效率的最佳。