人教版高中数学必修二 2.3 直线与平面垂直的判定 教学设计

时间:2019-05-12 16:58:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版高中数学必修二 2.3 直线与平面垂直的判定 教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版高中数学必修二 2.3 直线与平面垂直的判定 教学设计》。

第一篇:人教版高中数学必修二 2.3 直线与平面垂直的判定 教学设计

《2.3直线与平面垂直的判定》教学设计

长顺县民族高级中学高一数学组

一、教学内容和内容解析

《直线与平面垂直的判定》是高中新教材人教A版必修2第2章2.3.1的内容,本节课主要学习线面垂直的定义、判定定理及定理的初步运用。其中,线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。

直线与平面垂直的判定定理本节是通过折纸试验来感悟的,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行。直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的。

二、教学重点、难点,以及期望目标和目标解析

根据《课程标准》,线面垂直判定定理的严格证明在本节课中不做要求,这样降低了难度。

教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。期望目标:理解直线与平面垂直的定义,掌握直线与平面垂直的判定定理.目标解析: 1.利用已有知识与生活经验,抽象概括出直线与平面垂直的定义,培养学生数学抽象和直观想象的数学核心素养;

2.通过概括、辨析与应用,正确理解直线与平面垂直的定义;

3.通过直观感知、操作确认,归纳出直线与平面垂直的判定定理,培养学生直观想象的数学核心素养; 4.运用直线与平面垂直的判定定理,证明和直线与平面垂直有关的简单命题,培养学生逻辑推理的数学核心素养;

5.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.三、教学问题诊断分析

学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础。学生学习的困难在于如何从直线与平面垂直的直观形象中提炼出直线与平面垂直的定义,感悟直线与平面垂直的意义;以及如何从折纸试验中探究出直线与平面垂直的判定定理。

四、学习行为分析

本节课安排在立体几何的初始阶段,是学生空间观念形成的关键时期,课堂上学生通过感知、观察、提炼直线与平面垂直的定义,进而通过辨析讨论,深化对定义的理解。进一步,在一个具体的数学问题情境中猜想直线与平面垂直的定义及判定定理,并在教师的指导下,通过动手操作、观察分析、自主探索等活动,切身感受直线与平面垂直及定义判定定理的形成过程,体会蕴涵在其中的思想方法。继而,通过课本例1的学习概括直线与平面垂直的几种常用判定方法。再通过练习与课后小结,使学生进一步加深对直线与平面垂直的判定定理的理解。

五、教学支持条件分析

为了有效实现教学目标,教师准备:多媒体课件(以PowerPoint为平台)、三角板、大三角形纸片等教具;学生自备:三角形纸片(任意形状)、笔(表直线)、课本(表平面)等学具。

六、教学过程设计

(一)抽象概括直线与平面垂直的定义

探究一:直线与平面垂直的定义? 情景创设1:(播放视频)火箭升空时,火箭与地面的位置关系? 情景创设2:天安门前的旗杆与地面的位置关系?

情景创设3:请列举生活中直线与平面垂直的例子(学生回答——板书课题)。思考:我们怎样定义直线与平面垂直?

问题:(1)如图,在阳光下观察直立于地面的旗杆AB及它的影子,旗杆所在直线与影子所在直线位置关系是什么?

(2)旗杆与地面上任意一条不过旗杆底部B的直线B1C1的位置关系又是什么?

【意图】旨在让学生发现AB所在直线始终与地面上任意一条过点B的直线垂直,与地面上任意一条不过点B的直线也垂直。

注意强调:两条直线垂直有相交垂直和异面垂直两种,从中概括出:一条直线与一个平面垂直,那么该直线与此平面内的任意一条直线都垂直.从而由感性认识上升到理性认识的过程。

定义:(文字语言)如果直线l与平面内的任意一条直线都垂直,我们就说直线l与平面互相垂直,记作:l.直线l叫做平面的垂线,平面叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足.符号语言:学生在学案完成; 图形语言:(如图1)

判断题:对定义的辨析,展示幻灯片。

【意图】使学生明确平面中直线的“任意性”.通过辨析讨论,深化直线与平面垂直的概念。

探究二:除定义外,如何判定一条直线与平面垂直?(教师可提问:定义作为线面垂直判定的方法有何不足?)

1.观察猜想:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条10米的绳子,然后拉紧绳子 的下端放在地面上(和旗杆的脚不在同一直线上)。如果这两点都和旗杆脚的距离为6米,那么表明旗杆就和地面垂直了,为什么?

思考1.能不能像判定直线与平面平行那样,利用直线与平面内的一条直线垂直来判定直线与平面垂直呢? 思考2:一条直线不行,那么又能不能像判断平面与平面平行那样,利用直线与平面内两条直线都垂直来判定直线与平面垂直呢?

【意图】通过利用类比思想,寻找线面垂直的判定方法。也进一步让学生体会由无限转化为有限、平面化、降维等思想。

(二)动手操作,合作探究直线与平面垂直的判定定理

实验:请你拿出准备好的三角形的纸片,我们一起来做一个试验:如图2,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上,(BD、DC与桌面接触)

(1)折痕AD与桌面垂直吗?

(2)如何翻折才能使AD与桌面所在平面垂直?

AD【意图】通过折纸活动让学生发现,当且仅当折痕AD是BC边上的高时,BDCA 图2 所在直线与桌面所在的平面垂直 问题5:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线l,把BD、CD抽象为直线m,n,把桌面抽象为平面(如图3),那么你认为保证直线与平面如果将图3中的两条相交直线

垂直的条件是什么?,、的位置改变一下,仍保证

吗?(如图4)你认为直线还垂直于平面根据上面的试验,结合两条相交直线确定一个平面的事实,你能给出直线与平面垂直的判定方法吗?

定理:一条直线与一个平面内的两条相交直线都垂直,则

l该直线与此平面垂直.(如图5)

mPn图

5用符号语言表示为:

(可让学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化,教师注意引导。)

(三)知识应用(典型例题)

(练习)判断下列命题是否正确?(学生合作完成学案)

(1)若一条直线与一个三角形的两条边垂直,则这条直线垂直于三角形所在的平面.()(2)若一条直线与一个平行四边形的两条边垂直,则这条直线垂直于平行四边形所在的平面.()(3)若一条直线与一个梯形的两腰垂直,则这条直线垂直于梯形所在的平面.()例1:如图6,已知a∥b,a⊥α,求证:b⊥α.(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直

图6ab线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)

【意图】能分别用判定定理与定义解决问题,会用证明问题的一般思维策略:由已知想可知(性质),由未知想需知(判定),合理选择辅助线.这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系。

【意图】进一步领会问题解决的一般思维策略,合理选择辅助平面,体会转化思想在解决问题中的作用.例2:如图,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点。求证:(1)AC⊥平面VKB(2)AC⊥VB

思考:

(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;

(2)在⑴中,若E、F分别是AB、BC 的中点,试判断EF与平面VKB的位置关系;

(3)在⑵的条件下,有人说“VB⊥AC,VB⊥EF,∴VB⊥平面ABC”,对吗?

【意图】例2重在对直线与平面垂直判定定理的应用.变式(1)在例2的基础上,应用了直线与平面垂直的意义;变式(2)是对例1判定方法的应用;变式(3)的判断在于进一步巩固直线与平面垂直的判定定理。3个小题环环相扣,汇集了本节课的学习内容,突出了知识间内在联系和融会贯通。

(四)总结反思

(1)通过本节课的学习,在知识方面你学到什么?

(2)上述判断直线与平面垂直的方法体现了什么数学思想?

(3)你还有什么收获与感想?

【意图】培养学生反思的习惯,鼓励学生对研究的问题进行质疑和概括.(五)目标检测设计

1.课本 P66 探究:如图,直四棱柱A1B1C1D1-ABCD(侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD满足什么条件时,A1C⊥B1D1.

BB1C1DA1D1A

C2.如图,PA⊥平面ABC,BC⊥AC,写出图中所有的直角三角形。3.课本P67 练习2 【意图】第1题是基础题,巩固复习线面垂直的判定定理;第2题本节教材中的一道探究题,主要运用直线与平面垂直的意义与判定定理;第3题也是活用直线与平面垂直的意义与判定定理,前两题重在检测本节课的知识与技能目标,检测运用知识解决问题的能力;第3题通过学生探索,培养学生观察——分析——归纳和综合运用知识的能力。

(六)板书设计:

2.3.1 直线与平面垂直的判定

一、直线与平面垂直的定义

1、文字语言:

2、图形语言:

3、符号语言:

二、直线与平面垂直的判定

1、文字语言:

2、图形语言:

3、符号语言:

三、知识运用 例1:

四、课堂小结:

第二篇:2.3 直线、平面垂直的判定及其性质 教学设计 教案

教学准备

1.教学目标

1、知识与技能

(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;

(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。

2、过程与方法

(1)通过实例让学生直观感知“二面角”概念的形成过程;

(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。

2.教学重点/难点

通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。

3.教学用具

投影仪等.4.标签

数学,立体几何

教学过程

(一)创设情景,揭示课题

问题1:平面几何中“角”是怎样定义的?

问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?

以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察,研探。

(二)研探新知

1、二面角的有关概念

老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)

2、二面角的度量

二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。教师特别指出:

(1)在表示二面角的平面角时,要求“OA⊥L”,OB⊥L;(2)∠AOB的大小与点O在L上位置无关;(3)当二面角的平面角是直角时,这两个平做法:教师引导学生分析题意,先让学生自己动手推理证明,然后抽检学生掌握情况,教师最后讲评并板书证明过程。

(四)运用反馈,深化巩固 问题:课本P.73的探究问题

做法:学生思考(或分组讨论),老师与学生对话完成。

(五)小结归纳,整体认识

(1)二面角以及平面角的有关概念;

(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?

(六)课后巩固,拓展思维

1、课后作业:自二面角内一点分别向两个面引垂线,求证:它们所成的角与二两角的平面角互补。

2、课后思考问题:在表示二面角的平面角时,为何要求“OA⊥L、OB⊥L”?为什么∠AOB 的大小与点O在L上的位置无关?

课堂小结

(1)二面角以及平面角的有关概念;(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?

课后习题

1、课后作业:自二面角内一点分别向两个面引垂线,求证:它们所成的角与二两角的平面角互补。

2、课后思考问题:在表示二面角的平面角时,为何要求“OA⊥L、OB⊥L”?为什么∠AOB 的大小与点O在L上的位置无关?

板书 略

第三篇:《直线与平面垂直的判定》教学设计

《直线与平面垂直的判定》教学设计

一、背景分析:

直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中线线垂直位臵关系的拓展,又是面面垂直的基础,是空间中垂直位臵关系间转化的重心,同时它又是直线和平面所成的角等内容的基础,因而它是点、直线、平面间位臵关系中的核心概念之一.

对直线与平面垂直的定义的研究遵循“直观感知、抽象概括”的认知过程展开,而对直线与平面垂直的判定定理的研究则遵循“直观感知、操作确认、归纳总结、初步运用”的认知过程展开,通过该内容的学习,能进一步培养学生空间想象能力,发展学生的合情推理能力和一定的推理论证能力,同时体会“平面化”思想和“降维”思想.

教学重点:直观感知、操作确认,概括出直线与平面垂直的定义和判定定理.

二、学情分析:

学生已经学习了直线、平面平行的判定及性质,学习了两直线(共面或异面)互相垂直的位臵关系,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的空间想象能力、几何直观能力和推理论证能力.

在直线与平面垂直的判定定理中,为什么至少要两条直线,并且是两条相交直线,学生的理解有一定的困难,因为定义中“任一条直线”指的是“所有直线”,这种用“有限”代替“无限”的过程导致学生形成理解上的思维障碍.同时,由于学生的空间想象能力、推理论证能力有待进一步加强,在直线与平面垂直判定定理的运用中,不知如何选择平面内的两条相交直线证线面垂直(抑或选择平面证线面垂直从而得到线线垂直)导致证明过程中无从着手或发生错误. 教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用.

三、教学目标:

1.借助对图片、实例的观察,抽象概括出直线与平面垂直的定义.

2.通过直观感知、操作确认,归纳、概括出直线与平面垂直的判定定理.

3.能运用直线与平面垂直的判定定理,证明与直线和平面垂直有关的简单命题。

四、教学过程:

环节一:(复习引入)

1.直线和平面的位臵关系是什么?

(1)直线在平面内(无数个公共点)(2)直线和平面相交(有且只有一个公共点)(3)直线和平面平行(没有公共点)2.线面平行的判定定理的内容是什么?

如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.3.线面平行的性质定理的内容是什么?

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行

设计意图:通过对所学知识的提问与回答能使学生较快的进入到课堂情景 环节二:观察归纳直线与平面垂直的定义 1.直观感知

问题1:请同学们观察图片,说出旗杆与地面、大桥桥柱与水面是什么位臵关系?你能举出一些类似的例子吗?

设计意图:从实际背景出发,直观感知直线和平面垂直的位臵关系,使学生在头脑中产生直线与地面垂直的初步印象,为下一步的数学抽象做准备.

师生活动:观察图片,引导学生举出更多直线与平面垂直的例子,如教室内直立的墙角线和地面位臵关系,桌子腿与地面的位臵关系,直立书的书脊与桌面的位臵关系等,由此引出课题.

2.探究:什么叫做直线和平面垂直呢?当直线与平面垂直时,此直线与平面内的所有直线的关系又怎样呢?

我们已经学过直线和平面平行的判定和性质,知道直线和平面平行的问题可转化为考察直线和平面内直线平行的关系, 直线和平面垂直的问题同样可以转化为考察一条直线和一个平面内直线的关系,然后加以解决.

问题2:(1)如图1,在阳光下观察直立于地面旗杆AB及它在地面的影子BC,旗杆所在的直线与影子所在直线位臵关系是什么?

(2)旗杆AB与地面上任意一条不过旗杆底部B的直线B1C1的位臵关系又是什么?

随着时间的变化,尽管影子的位臵在移动,但是旗杆所在的直线始终与影子所在的直线垂直(如图),事实上,旗杆AB所在直线与地面内任意一条不过点B的直线也是垂直的。设计意图:引导学生用“平面化”的思想来思考问题,通过观察,感知直线与平面垂直的本质属性.

师生活动:教师用多媒体课件演示旗杆在地面上的影子随着时间的变化而移动的过程,引导学生得出旗杆所在直线与地面内的直线都垂直.

3.抽象概括

问题

3、通过上述观察分析,你认为应该如何定义一条直线与一个平面垂直?

设计意图:让学生归纳、概括出直线与平面垂直的定义.

师生活动:学生思考作答,教师补充完善,指出定义中的“任意一条直线”与“所有直线”是同意词,定义是说这条直线和平面内所有直线垂直.同时给出线面垂直的记法与画法.

定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线 l与平面α互相垂直,记作: l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足.

画法:画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直,4.辩析举例

辨析:下列命题是否正确,为什么?

(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直.

(2)如果一条直线垂直一个平面,那么这条直线就垂直于这个平面内的任一直线.

设计意图:通过问题辨析,加深概念的理解,掌握概念的本质属性.由(1)使学生明确定义中的“任意一条直线”是“所有直线”的意思,定义的实质就是直线与平面内所有直线都垂直.由(2)使学生明确,线面垂直的定义既是线面垂直的判定又是性质,线线垂直与线面垂直可以相互转化.

师生活动:命题(1)判断中引导学生用三角板两直角边表两垂直直线,桌面表平面举出反例.教师利用三角板和教鞭进行演示,将一块大直角三角板的一条直角边AC放在讲台上演示,这时另一 条直角边BC就和讲台上的一条直线(即三角板与桌面的交线AC)垂直,但它不一定和讲台桌面垂直.在此基础上在讲台上放一根和AC平行的教鞭EF并平行移动,那么BC始终和EF垂直,但它不一定和讲台桌面垂直,如图3.

对命题(2)的判断 归纳常用命题。

利用定义,我们得到了判定线面垂直的最基本方法,同时也得到了线面垂直的最基本的性质

环节三:探究发现直线与平面垂直的判定定理

1.观察猜想

虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施.有没有比较方便可行的方法来判断直线和平面垂直呢?

问题

4、(1)如果直线与平面内一条直线垂直,则直线和平面是否垂直?

(2)如果直线 与平面内两条直线垂直,则直线与平面是否垂直?

如果两条直线平行 如果两条直线相交?

设计意图:采用类比思想将线面关系引导到线线关系。

问题5:观察跨栏、简易木架等实物,你能猜想出判断一条直线与一个平面垂直的方法吗?

设计意图:通过问题思考与实例分析,寻找具有可操作性的判定方法,体验有限与无限之间的辩证关系.

师生活动:引导学生观察思考,给出猜想:一条直线与一个平面内两相交直线都垂直,则该直线与此平面垂直.

2.操作确认

问题6:如图4,请同学们拿出准备好的一块(任意)三角形的纸片,我们一起来做一个实验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放臵在桌面上,(BD、DC与桌面接触).观察并思考:

(1)折痕AD与桌面垂直吗?如何翻折才能使折痕AD与桌面所在的平面垂直?

(2)由折痕AD⊥BC,翻折之后垂直关系,即AD⊥CD,AD⊥BD发生变化吗?由此你能得到什么结论? 设计意图:通过实验,引导学生独立发现直线与平面垂直的条件,培养学生的动手操作能力和几何直观能力.

师生活动:在折纸试验中,学生会出现“垂直”与“不垂直”两种情况,引导学生进行交流,根据直线与平面垂直的定义分析“不垂直”的原因.学生再次折纸,进而探究直线与平面垂直的条件,经过讨论交流,使学生发现只要保证折痕AD是BC边上的高,即AD⊥BC,翻折后折痕AD就与桌面垂直,再利用多媒体演示翻折过程,增强几何直观性.

3.合情推理

问题7:根据上面的试验,结合两条相交直线确定一个平面的事实,你能给出直线与平面垂直的判定方法吗?

设计意图:引导学生根据直观感知及已有知识经验,进行合情推理,获得判定定理.

师生活动:教师引导学生回忆出“两条相交直线确定一个平面”,以及直观过程中获得的感知,将“与平面内所有直线垂直”逐步归结到“与平面内两条相交直线垂直”,进而归纳出直线与平面垂直的判定定理.同时指出要判断一条直线与一个平面是否垂直,取决于在这个平面内能否找到两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点是无关紧要的.定理充分体现了“直线与平面垂直”与“直线与直线垂直”相互转化的数学思想.

定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.

用符号语言表示为:

环节四:例题示范,巩固新知

1、如图,已知a∥b,a⊥α 求证:b⊥α

师生活动:教师引导学生分析思路,可利用线面垂直的定义证,也可用判定定理证,提示辅助线的添法,将思路集中在如何在平面内α内找到两条与直线b垂直的相交直线上.另外,再引导学生将已知条件具体化的过程中,逐步明确根据异面直线所成角的概念解决问题.学生练习本上完成,对照课本完善自己的解题步骤.同时指出:本例结果可以作为直线和平面垂直的又一个判定定理.这样判定一条直线与已知平面垂直,可以用这条直线垂直于平面两条相交直线来证明,也可以用这条直线的平行直线垂直于平面来证明.设计意图:初步感受如何运用直线与平面垂直的判定定理与定义解决问题,明确运用线面垂直判定定理的条件.

环节五:巩固练习,强化新知

巩固练习1:如图,在正方体ABCD-A1B1C1D1中,(1)请找出与平面ABCD垂直的棱所在的直线 ;(2)请列举与直线A1A垂直的平面 ;

(3)你能找出一条与平面D1DBB1垂直的直线吗?

设计意图:进一步感受如何运用直线与平面垂直的判定定理证明线面垂直,体会转化思想在证题中的作用,发展学生的几何直观能力与一定的推理论证能力,同时教师板书证明格式。

巩固练习2:若把正方体切成四棱锥(1)

吗?

吗?

吗?

(2)若在PC的中点为E,则(3)若AD中点为M,PB的中点为N,则设计意图:围绕正方体的切割,通过一系列有梯度问题的设计,给学生一种既熟悉又陌生的感觉,让学生动脑,进一步围绕判定定理来解决问题,使知识升华。

环节六:小结升华: 小结:

1、思路引领:要证明线面垂直的问题,可以通过证明线线垂直来实现.2、友情提示:平面内的这两条直线必须相交;

3、学习重点:直线与平面垂直的定义及判定定理

4、数学思想及方法:

空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限

第四篇:直线与平面垂直的判定的教学设计

直线与平面垂直的判定的教学设计

阜阳市城郊中学

吴桃李

一、内容和内容解析

本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其应用.直线与平面垂直是通过直线和平面内的任意一条直线(无一例外)都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法;直线与平面垂直的判定定理本节是通过折纸试验来感悟的,即一条直线只要与平面内的两条相交直线垂直就可以判定直线与平面垂直了,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行.直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的.本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”,“无限转化为有限”“线线垂直与线面垂直互相转化”等数学思想.直线与平面垂直是研究空间中的线线关系和线面关系的桥梁,为后继面面垂直的学习、距离的学习奠定基础.

二、教学目标和解析

1.借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;

2.通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;

3.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.三、教学问题诊断分析

学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础.学生学习的困难在于如何从直线与平面垂直的直观形象中提炼出直线与平面垂直的定义,感悟直线与平面垂直的意义;以及如何从折纸试验中探究出直线与平面垂直的判定定理.

教学的重点是直线与平面垂直的定义和直线与平面垂直判定定理的探究; 教学的难点是操作确认并概括出直线与平面垂直的判定定理及初步运用.

四、学习行为分析

本节课安排在立体几何的初始阶段,是学生空间观念形成的关键时期,课堂上学生通过感知、观察、提炼直线与平面垂直的定义,进而通过辨析讨论,深化对定义的理解.进一步,在一个具体的数学问题情境中猜想直线与平面垂直的判定定理,并在教师的指导下,通过动手操作、观察分析、自主探索等活动,切身感受直线与平面垂直判定定理的形成过程,体会蕴涵在其中的思想方法.继而,通过例1的学习概括直线与平面垂直的几种常用判定方法.再通过练习与课后小结,使学生进一步加深对直线与平面垂直的判定定理的理解.

五、教学支持条件分析

观察和展示现实生活中的实例与图片,以直观感知直线与平面垂直的形象;准备三角形纸片,用于探究直线与平面垂直的判定定理;制作多媒体课件动态演示,以加深对直线与平面垂直定义及判定定理的感知与理解.

六、教学过程设计

1.从实际背景中感知直线与平面垂直的形象

问题1:空间一条直线和一个平面有哪几种位置关系?

设计意图:此问基于学生已有的数学现实,通过对已学相关知识的追忆,寻找新知识学习的“固着点”. 问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明.

设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义.

2.提炼直线与平面垂直的定义

问题3:你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?

设计意图:两直线垂直有相交垂直和异面垂直,而异面直线垂直是转化为两直线相交垂直,实质上是将空间问题转化为平面问题,让学生回忆直线与直线垂直的定义,旨在由此得到启发:用“平面化”的思想来思考问题,即能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直?

问题4:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?

(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?

(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么?

设计意图:第(1)与(2)两问旨在让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问进一步让学生发现旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念.

(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?

(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)

设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念.通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法. 通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验.这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法. 3.探究直线与平面垂直的判定定理 创设情境 猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚不在同一直线上).如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?

设计意图:引导学生根据直观感知以及已有经验,进行合情推理,猜想判定定理. 师生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)

问题5:(1)折痕AD与桌面垂直吗?

(2)如何翻折才能使折痕AD与桌面所在的平面垂直?(组织学生动手操作、探究、确认)

设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直.

问题6:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD抽象为直线,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么?

对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内.问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)

设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线.

问题7:如果将图3中的两条相交直线、的位置改变一下,仍保证,(如图4)你认为直线还垂直于平面吗?

设计意图:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的.

根据试验,请你给出直线与平面垂直的判定方法.

(学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化)问题8:(1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么? 设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想.思考:现在,你知道两位工人是根据什么原理安装旗杆的吗?为什么要求绳子在地面上两点和旗杆脚不在同一直线上?

如果安装完了,请你去检验旗杆与地面是否垂直,你有什么好方法?

设计意图:用学到手的知识解释实际生活中的问题,增强学生用数学的意识,同时通过提出 “为什么要求绳子在地面上两点和旗杆脚不在同一直线上?”(对该问题可引导学生用三角形纸片来验证),从而来深化对直线与平面垂直判定定理的理解.

4.直线与平面垂直判定定理的应用

如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线.并说明这些直线有怎样的位置关系?

思考:如图6,已知,则吗?请说明理由.

(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)设计意图:这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系.

练习:如图7,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点. 求证:AC⊥平面VKB

思考:

(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;

(2)在⑴中,若E、F分别是AB、BC 的中点,试判断EF与平面VKB的位置关系;

(3)在⑵的条件下,有人说“VB⊥AC,VB⊥EF,∴VB⊥平面ABC”,对吗? 设计意图:例2重在对直线与平面垂直判定定理的应用.变式(1)在例2的基础上,应用了直线与平面垂直的意义;变式(2)是对例1判定方法的应用;变式(3)的判断在于进一步巩固直线与平面垂直的判定定理.3个小题环环相扣,汇集了本节课的学习内容,突出了知识间内在联系和融会贯通.

5.小结回授

(1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述.(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?

设计意图:以问题讨论的方式进行小结,培养学生反思的习惯,鼓励学生运用自己理解的语言对问题进行质疑和概括.

七、目标检测设计

1.PA⊥平面ABC,BC⊥AC,写出图中所有的直角三角形.

第五篇:人教B版高中数学必修2第一章1.2.3直线与平面垂直的判定

全国中小学“教学中的互联网搜索”优秀教学案例评选

教案设计(1.2.3直线与平面垂直的判定)

②观察实例:学生将书打开直立于桌面,观察书脊与桌面的位置关系。

③提出思考问题:如何定义一条直线与一个平面垂直?

(2)观察归纳—形成概念

①学生画图:将旗杆与地面的位置关系画出相应的几何图形。

②提出问题:能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直呢?(学生讨论并交流)

③动画演示:旗杆与它在地面上影子的位置变化,重点让学生体会直线与平面内不过垂足的直线也垂直。

④归纳直线与平面垂直的定义、介绍相关概念,并要求学生用符号语言表示。

(3)辨析讨论—深化概念

判断正误:

①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。②若a⊥α,bα,则a⊥b。(学生利用铁丝和三角板进行演示,讨论交流。)

这一环节是本节课的基础。线面垂直定义比较抽象,若直接给出,学生只能死记硬背,这样,不利于学生思维能力的发展。如何使学生从“线面垂直的直观感知”中抽象出“直线与平面内所有直线垂直”是本环节的关键,因此,在教学中,充分发挥学生的主观能动性,先安排学生课前收集大量图片,多感知,然后,通过学生动手画图、讨论交流和多媒体课件演示,使其经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的概念,最后,通过辨析讨论加深学生对概念的理解。这种立足于感性认识的归纳过程,即由特殊到一般,由具体到抽象,既有助于学生对概念本质的理解,又使学生的抽象思维得到发展,培养学生的几何直观能力。

2、直线与平面垂直的判定定理的探究

这个探究活动是本节课的关键所在,分三步进行:

(1)分析实例—猜想定理

问题①在长方体ABCD-A1B1C1D1中,棱BB1与底面ABCD垂直,观察BB1与底面ABCD内直线AB、BC有怎样的位置关系?由此你认为保证BB1⊥底面ABCD的条件是什么?

问题②如何将一张长方形贺卡直立于桌面?

问题③由上述两个实例,你能猜想出判断一条直线与一个平面垂直的方法吗?

学生提出猜想:

如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

(2)动手实验—确认定理

折纸实验:过△ABC的顶点A翻折纸片,得到折痕AD,再将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),进行观察并思考:

问题④折痕AD与桌面垂直吗?如何翻折才能使折痕AD与桌面所在的平面垂直?

问题⑤由折痕AD⊥BC,翻折之后垂直关系发生变化吗?(即AD⊥CD,AD⊥BD还成立吗?)由此你能得到什么结论?

学生折纸可能会出现“垂直”与“不垂直”两种情况,引导这两类学生进行交流,分析“不垂直”的原因,从而发现垂直的条件—折痕AD是BC边上的高,进而引导学生观察动态演示模拟试验,根据“两条相交直线确定一个平面”的事实和实验中的感知进行合情推理,归纳出线面垂直的判定定理,并要求学生画图,用符号语言表示。

(3)质疑反思—深化定理

问题⑥如果一条直线与平面内的两条平行直线都垂直,那么该直线与此平面垂直吗?由于两条平行直线也确定一个平面,这个问题是学生会问到的。可以引导学生通过操作模型(三角板)来确认,消除学生心中的疑惑,进一步明确线面垂直的判定定理中的“两条”、“相交”缺一不可!

在本环节中,借助学生最熟悉的长方体模型和生活中最简单的经验,引导学生分析,将“与平面内所有直线垂直”逐步转化为“与平面内两条相交直线垂直”,并以此为基础,进行合情推理,提出猜想,使学生的思维顺畅,为进一步的探究做准备。

由于《课程标准》中不要求严格证明线面垂直的判定定理,只要求直观感知、操作确认,注重合情推理。因而,安排学生动手实验,讨论交流、为便于学生对实验现象进行观察和分析,自己发现结论,还增设了动态演示模拟试验,让学生更加清楚地看到“平面化”的过程。学生在已有数学知识的基础上,加之以公理的支撑,便可以确认定理。

教学中,让学生真正体会到知识产生的过程,有利于发展学生的合情推理能力和空间想象能力。与此同时,鼓励学生大胆尝试,不怕失败,教训有时比经验更深刻,使学生在自己的实践中感受数学探索的乐趣,获得成功的体验,增强学习数学的兴趣。在讨论交流中激发学生的积极性和创造性,为今后自主学习打下基础。

3、直线与平面垂直的判定定理的初步应用

考虑到学生处于初学阶段,补充利用练习(1)和练习(2)做铺垫。学生先尝试去做并板演,师生共同评析,帮助学生明确运用定理时的具体步骤,培养学生严谨的逻辑推理。练习(3)使学生对线面垂直认识由感性上升到理性;同时,展示了平行与垂直之间的联系,给出判断线面垂直的一种间接方法,为今后多角度研究问题提供思路。根据学生的实际情况,本题可机动处理。

4、布置作业—自主探究

(1)如图,点P是平行四边形ABCD所在平面外一点,O是对角线AC与BD的交点,且PA=PC,PB=PD.求证:PO⊥平面ABCD

下载人教版高中数学必修二 2.3 直线与平面垂直的判定 教学设计word格式文档
下载人教版高中数学必修二 2.3 直线与平面垂直的判定 教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《直线与平面垂直的判定》教学设计(最终版)

    《直线与平面垂直的判定》教学设计 一、内容和内容解析 本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线......

    直线与平面垂直的判定的教学反思

    2013年5月13日《直线与平面垂直的判定》的教学反思 一、复习引入部分 在复习回顾过程中,我首先提出了一个问题:问直线和平面有几种位置关系。我们研究了直线和平面平行,直线在......

    直线与平面垂直的判定教学反思

    《直线与平面垂直的判定》的教学反思 焉耆一中数学组李新华 本节是高一《必修2》第二章第三节第一课时的内容。本节课所要达到的知识目标是:(1)掌握线面垂直的定义;(2)掌握线面垂......

    直线与平面垂直的判定教案

    《直线与平面垂直的判定》 选自人教版《普通高中课程标准实验教科书·数学》必修2第二章第三节 一、教学目标 1.知识与技能目标 .掌握直线与平面垂直的定义 .理解并掌......

    《直线与平面垂直的定义与判定》教学案例

    《直线与平面垂直的定义与判定》教学案例1 案例背景笔者上课的时间是2010年3月9日第三节,围绕新课改的精神,如何进行课堂教学上的公开课。我校是乡下普通高中,上课的班级是高二......

    直线与平面垂直的判定定理练习

    直线与平面垂直的判定定理 1、如果直线ab,且a平面,则b与的位置关系是 2、过一点有 3、下列说法中正确的有(1)平行于同一条直线的两条直线互相平行;(2)垂直于同一条直线的两条直线......

    直线与平面垂直的判定和性质练习题

    直线与平面垂直的判定和性质、 平面与平面垂直的判定和性质(6.8) 出题人:娄媛审题人:刘福义 一、选择题 1.两异面直线在平面α内的射影 A.相交直线B.平行直线 C.一条直线—个点D.以上......

    直线与平面垂直的判定教案说明

    《直线与平面垂直的判定》教案说明《直线与平面垂直的判定》教案说明北京市第五中学熊丹一、教学内容的分析本节课的内容包括直线与平面垂直的定义和判定定理两部分.直线与平......