第一篇:高中数学《秦九韶算法与排序》教案1 北师大版必修3
第三、四课时 秦九韶算法与排序
(1)教学目标(a)知识与技能
1.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
2.掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。
(b)过程与方法
模仿秦九韶计算方法,体会古人计算构思的巧妙。能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。(c)情态与价值
通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。
(2)教学重难点
重点:1.秦九韶算法的特点
2.两种排序法的排序步骤及计算机程序设计 难点:1.秦九韶算法的先进性理解
2.排序法的计算机程序设计(3)学法与教学用具
学法:1.探究秦九韶算法对比一般计算方法中计算次数的改变,体会科学的计算。2.模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。
教学用具:电脑,计算器,图形计算器
(4)教学设想
(一)创设情景,揭示课题
我们已经学过了多项式的计算,下面我们计算一下多项式
5432f(x)xxxxx1当x5时的值,并统计所做的计算的种类及计算次数。
根据我们的计算统计可以得出我们共需要10次乘法运算,5次加法运算。
2我们把多项式变形为:f(x)x(1x(1x(1x)))x1再统计一下计算当x5时的值时需要的计算次数,可以得出仅需4次乘法和5次加法运算即可得出结果。显然少了6次乘法运算。这种算法就叫秦九韶算法。
(二)研探新知
1.秦九韶计算多项式的方法
用心
爱心
专心 31
f(x)anxan1x(anxn1n2nn1an2xn3n2a1xa0a1)xa0an1xn2an2xn3((anxan1xa2)xa1)xa0
(((anxan1)xan2)xa1)a0例1 已知一个5次多项式为f(x)5x52x43.5x32.6x21.7x0.8 用秦九韶算法求这个多项式当x5时的值。解:略
思考:(1)例1计算时需要多少次乘法计算?多少次加法计算?
(2)在利用秦九韶算法计算n次多项式当xx0时需要多少次乘法计算和多少次加法计算?
练习:利用秦九韶算法计算f(x)0.83x50.41x40.16x30.33x20.5x1 当x5时的值,并统计需要多少次乘法计算和多少次加法计算? 例2 设计利用秦九韶算法计算5次多项式
f(x)a5xa4xa3xa2xa1xa0当xx0时的值的程序框图。5432解:程序框图如下:
开始输入f(x)的系数:a1,a2,a3,a4,a5输入x0n=1v=a5 n=n+1v=v x0+a5-nn≤5是否输出v结束
用心
爱心
专心
练习:利用程序框图试编写BASIC程序并在计算机上测试自己的程序。
2.排序
在信息技术课中我们学习过电子表格,电子表格对分数的排序非常简单,那么电子计算机是怎么对数据进行排序的呢? 阅读课本P30—P31面的内容,回答下面的问题:(1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别?(2)冒泡法排序中对5个数字进行排序最多需要多少趟?(3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次? 游戏:5位同学每人拿一个数字牌在讲台上演示冒泡排序法对5个数据4,11,7,9,6排序的过程,让学生通过观察叙述冒泡排序法的主要步骤.并结合步骤解决例3的问题.例3 用冒泡排序法对数据7,5,3,9,1从小到大进行排序
解:P32 练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果.例4 设计冒泡排序法对5个数据进行排序的程序框图.解: 程序框图如下:
开始输入a1,a2,a3,a4,a5r=1i=1ai>ai+1是否x=aiai=ai+1ai+1=xi=i+1r=r+1i=5否是r=5否是输出a1,a2,a3,a4,a5结束 思考:直接排序法的程序框图如何设计?可否把上述程序框图转化为程序? 练习:用直接排序法对例3中的数据从小到大排序
用心
爱心
专心
3.小结:(1)秦九韶算法计算多项式的值及程序设计
(2)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法(3)冒泡法排序的计算机程序框图设计(5)评价设计
作业:P38 A(2)(3)
补充:设计程序框图对上述两组数进行排序
用心
爱心
专心 34
第二篇:《算法案例:秦九韶算法》教学教案
秦九韶算法
学习目标
1.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
2.掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。学习重难点
重点:1.秦九韶算法的特点
2.两种排序法的排序步骤及计算机程序设计 难点:1.秦九韶算法的先进性理解
2.排序法的计算机程序设计
学法与学习用具
学法:1.探究秦九韶算法对比一般计算方法中计算次数的改变,体会科学的计算。
2.模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。
学习用具:电脑,计算器,图形计算器 学习设想
(一)创设情景,揭示课题
我们已经学过了多项式的计算,下面我们计算一下多项式
f(x)x5x4x3x2x1当x5时的值,并统计所做的计算的种类及计算次数。
根据我们的计算统计可以得出我们共需要10次乘法运算,5次加法运算。我们把多项式变形为:f(x)x2(1x(1x(1x)))x1再统计一下计算当x5时的值时需要的计算次数,可以得出仅需4次乘法和5次加法运算即可得出结果。显然少了6次乘法运算。这种算法就叫秦九韶算法。
(二)研探新知
/ 4
1.秦九韶计算多项式的方法
f(x)anxnan1xn1an2xn2a1xa0(anxn1an1xn2an2xn3a1)xa0((anxn2an1xn3a2)xa1)xa0(((anxan1)xan2)xa1)a0例1 已知一个5次多项式为f(x)5x52x43.5x32.6x21.7x0.8 用秦九韶算法求这个多项式当x5时的值。解:略
思考:(1)例1计算时需要多少次乘法计算?多少次加法计算?
(2)在利用秦九韶算法计算n次多项式当xx0时需要多少次乘法计算和多少次加法计算?
练习:利用秦九韶算法计算f(x)0.83x50.41x40.16x30.33x20.5x1 当x5时的值,并统计需要多少次乘法计算和多少次加法计算? 例2 设计利用秦九韶算法计算5次多项式
f(x)a5x5a4x4a3x3a2x2a1xa0当xx0时的值的程序框图。解:程序框图如下:
/ 4
开始输入f(x)的系数:a1,a2,a3,a4,a5输入x0n=1v=a5 n=n+1v=v x0+a5-nn≤5是否输出v结束
练习:利用程序框图试编写BASIC程序并在计算机上测试自己的程序。
2.排序
在信息技术课中我们学习过电子表格,电子表格对分数的排序非常简单,那么电子计算机是怎么对数据进行排序的呢? 阅读课本P30—P31面的内容,回答下面的问题:(1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别?(2)冒泡法排序中对5个数字进行排序最多需要多少趟?(3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次? 游戏:5位同学每人拿一个数字牌在讲台上演示冒泡排序法对5个数据4,11,7,9,6排序的过程,让学生通过观察叙述冒泡排序法的主要步骤.并结合步骤解决例3的问题.例3 用冒泡排序法对数据7,5,3,9,1从小到大进行排序
/ 4
练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果.例4 设计冒泡排序法对5个数据进行排序的程序框图.解: 程序框图如下:
开始输入a1,a2,a3,a4,a5r=1i=1ai>ai+1是否x=aiai=ai+1ai+1=xi=i+1r=r+1i=5否是r=5否是输出a1,a2,a3,a4,a5结束 思考:直接排序法的程序框图如何设计?可否把上述程序框图转化为程序? 练习:用直接排序法对例3中的数据从小到大排序 3.小结:(1)秦九韶算法计算多项式的值及程序设计
(2)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法(3)冒泡法排序的计算机程序框图设计
/ 4
第三篇:P037算法案例---秦九韶算法教案(共)
清华同方教育技术研究院数学所
2013/04/16 Tuesday 09:41 算法案例---秦九韶算法
教学要求:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质;理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用.教学重点:秦九韶算法的特点及其程序设计.教学难点:秦九韶算法的先进性理解及其程序设计.教学过程:
一、复习准备:
1.分别用辗转相除法和更相减损术求出两个正数623和1513的最大公约数.2.设计一个求多项式
f(x)2x5x4x3x6x75432当x5时的值的算法.(学生自己提出一般的解决方案:将x5代入多项式进行计算即可)
提问:上述算法在计算时共用了多少次乘法运算?多少次加法运算?此方案有何优缺点?(上述算法一共做了5+4+3+2+1=15次乘法运算,5次加法运算.优点是简单、易懂;缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.)
二、讲授新课: 1.教学秦九韶算法:
① 提问:在计算x的幂值时,可以利用前面的计算结果,以减少计算量,即先计算x,2然后依次计算xx,(xx)x,((xx)x)x的值,这样计算上述多项式的值,一共需
222要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算)
② 结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果.③ 更有效的一种算法是: 将f(5多x)4项
2x式
3变
5x2形
4x为
3x:
6x7,依次计算2555,55421,2153108,10856534,534572677
故f(5)2677.――这种算法就是“秦九韶算法”.(注意变形,强调格式)
版权所有,盗版必究
第1页,共2页 清华同方教育技术研究院数学所
2013/04/16 Tuesday 09:41 ④ 练习:用秦九韶算法求多项式f(x)2xx3x5x1当x4时的值.(学生板书师生共评教师提问:上述算法共需多少次乘法运算?多少次加法运算?)
⑤ 如何用秦九韶算法完成一般多项式题?
改f(xanxan1xnn1432f(x)anxan1xnn1a1xa0的求值问
写axa)anxanxanxaxa1:
.首先计算最内层括号内一次多项式的值,即次多项式的值,即v2v1xan2v1anxan1,然后由内向外逐层计算一
.,v3v2xan3,,vnvn1xa0⑥ 结论:秦九韶算法将求n次多项式的值转化为求n个一次多项式的值,整个过程只需n次乘法运算和n次加法运算;观察上述n个一次式,可发出
vk的计算要用到
vk1的值,v0an,vvk1xank(k1,2,,n)v0an若令,可得到下列递推公式:k.这是一个反复执行的步骤,因此可用循环结构来实现.⑦ 练习:用秦九韶算法求多项式x5时的值并画出程序框图.f(x)5x2x3.5x2.6x1.7x0.85432当2.小结:秦九韶算法的特点及其程序设计
三、巩固练习:
1、练习:教材P35第2题
2、作业:教材P36第2题
版权所有,盗版必究
第2页,共2页
第四篇:高中数学必修3经典教案全集
新课标高中数学必修3教案
目
录
第一章 算法初步...............................................................................................................................1 1.1.1算法的概念.......................................................................................................................3 1.1.2 程序框图(第二、三课时)................................................................................................9 1.2.1输入、输出语句和赋值语句(第一课时).......................................................................15 1.2.2-1.2.3条件语句和循环语句(第二、三课时)..................................................................21 1.3算法案例 第1、2课时 辗转相除法与更相减损术.............................................................27 第3、4课时 秦九韶算法与排序.........................................................................31 第5课时 进位制...................................................................................................35 算法初步 复习课...........................................................................................................................39 第二章 统计初步.............................................................................................................................45 2.1.1 简单随机抽样.......................................................................................................................45 2.1.2 系统抽样...............................................................................................................................49 2.1.3 分层抽样...............................................................................................................................53 2.2.1用样本的频率分布估计总体分布(2课时).......................................................................57 2.2.2用样本的数字特征估计总体的数字特征(2课时)...........................................................61 第三章 概率......................................................................................................................................65 3.1 随机事件的概率 3.1.1 —3.1.2随机事件的概率及概率的意义(第一、二课时)...............65 3.1.3 概率的基本性质(第三课时)...........................................................................................69 3.2 古典概型(第四、五课时)3.2.1 —3.2.2古典概型及随机数的产生..............................73 3.3 几何概型 3.3.1—3.3.2几何概型及均匀随机数的产生.......................................................79
I
第五篇:高中数学《循环结构》学案1 北师大版必修3
1、1、2、3循环结构
一、【学习目标】
1、熟练掌握两种循环结构的特点及功能.2、能用两种循环结构画出求和等实际问题的程序框图,进一步理解学习算法的意义.二、【自学内容和要求及自学过程】
现在国家在实施新农村建设,争取每个村庄都能达到碧水蓝天.事实上,有些重污染企业都是建在偏远的山村.这些山村要真正的实现碧水蓝天,就要对污水进行处理.那么大家知道污水是怎样处理的吗?污水进入处理装置后,进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,知道达到标准为止.事实上污水处理装置就是一个循环系统,对于处理需要反复操作的事情具有巨大的优势.我们数学中的很多问题需要反复操作,譬如用二分法求方程的近似解,数列求和等等.这些问题如果交给计算机去做就会方便得多,这就需要我们编写计算机程序,分析算法.今天我们来学习能够反复操作的逻辑结构——循环结构.<1>什么是循环结构、循环体? <2>试用程序框图表示循环结构.<3>请你简要解释直到型循环结构和当型循环结构.结论:<1>在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是.称为循环体.<2>见教材第13页图1.1—12,1.1—13.<3>①直到型循环结构:这个循环结构有如下特征:在执行了一次循环体,就继续执行循环体,直到 终止循环.因此,这种循环结构称为直到型循环结构.②当型循环结构:这种循环结构有如下特征:在每次执行循环提,对条件进行判断,执行循环体,否则终止循环.这种循环称为当型循环结构.从以上两种不同形式的循环结构可以看出,循环结构中一定包含,用于确定何时终止执行循环体.三、【综合练习与思考探索】
练习一:教材例
6、设计一个计算1+2+…+100的值的算法,并画出程序框图.算法分析:通常,我们按照下列过程计算1+2+…+100的值.第一步,0+1=1 第二步,1+2=3 第三步,3+3=6 第四步,6+4=10 ……
第100步,4950+100=5050 显然,这个过程中包含重复操作的步循环结构表示.分析上述计算过程,可以发可以表示为:
第(i-1)步的结果+i=第i步的结果.为了方便、有效的表示上述过程,我们变量S来表示每一步的计算结果,即把S+i为S,从而把第i步表示为S=S+i.其中S的初始值为0,i依次取为1,用心
爱心
专心
骤,可以用现每一步都
用一个累加的结果仍记2,…,100.1 由于i同时记录了循环的次数,所以也称为计数变量.解决这一问题的算法是: 第一步,令i=1,S=0.第二步,若i≤100成立,则执行第三步;否则,输出S,结束算法.第三步,S=S+i.第四步,i=i+1.返回第二步.程序框图如图所示(当型循环结构)
引申:请用直到型循环结构表示,画出程序框图.四、【作业】
1、必做题:理解例6、7,并把程序框图画到作业本上.2、选做题:习题1.1A组第2题.用心
爱心
专心 2