第一篇:高中数学 第1章 算法初步 1.2 流程图 1.2.1 顺序结构教案 苏教版必修3
1.2.1 顺序结构
整体设计
教材分析
图1 顺序结构是一种最简单、最常用、最重要的程序结构,它不存在条件判断、控制转移和重复执行的操作.顺序结构指的是依次进行多个处理的结构,它是由若干个依次执行的处理步骤组成的,是任何一个算法都离不开的最基本、最简单的结构,因此也是最重要的程序结构,其特点是各个部分按照出现的先后顺序执行.一个顺序结构可以由一个或多个语句块组成,且仅有一个入口和一个出口.最简单的一种顺序结构是每一个语句块中只含有一条不产生控制转移的执行语句.每个语句块本身也可以是一个顺序结构,因此一个顺序结构可以由许多顺序执行的语句组成.在顺序结构程序中,各语句是按照位置的先后次序,顺序执行的,且每个语句都会被执行到.在日常生活中有很多这样的例子.例如在淘米煮饭的时候,总是先淘米,然后才煮饭,不可能是先煮饭后淘米.所以在编写顺序结构的应用程序的时候,也存在着明显的先后次序,应注意这种先后顺序关系.当然,为了让计算机处理各种数据,首先就应该把源数据输入到计算机中;计算机处理结束后,再将目标数据以人能够识别的方式输出.对于顺序结构,学生容易理解,教学时让学生自己举一些只包含顺序结构算法的实例.三维目标
通过实际生活中的实例和典型的顺序结构案例,使学生理解顺序结构的意义,并能够用流程图表示顺序结构以及能用顺序结构的流程图表示简单问题的算法,养成良好的逻辑思维习惯,达到提升学生逻辑思维能力的目标.重点难点
教学重点:用顺序结构的流程图表示简单问题的算法.教学难点:用流程图表示算法.课时安排 1课时
教学过程
导入新课 设计思路一:(情境导入)
有一个笑话,是赵本山和宋丹丹的小品中演的,宋丹丹问:“要把大象装冰箱,总共分几步?”赵本山答不上来,宋丹丹给出答案:“三步!第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门带上.”
尽管这是一个笑话,但是宋丹丹的答案中把大象放进冰箱分了明确的三步:第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门带上.这三步缺一不可,每步都必须执行,且先后顺序不可调换.我们不知道宋丹丹是不是学习过算法,但是她的回答恰恰体现了算法中最基本、最简单的一种结构,即顺序结构的思想.(引入新课,板书课题——顺序结构)设计思路二:(问题导入)
我们做任何一件事,都要按照一定的顺序来按部就班地做.例如做饭就是这样,我们必须先淘米,再把米和水按一定比例一起放在电饭锅里,再插上电源打开开关,这三个步骤缺一不可,每步都必须执行,且顺序不能调换.解决数学问题更是如此,例如我们要确定已知线段AB的三等分点,那么应该怎样来完成呢?
S1 过线段AB的一个端点(不妨设A)作射线AP; S2 在AP上依次截取AC=CD=DE; S3 连结BE;
S4 分别过C、D作BE的平行线,交AB于点M、N,则M、N就是线段AB的三等分点.上述四个步骤也是缺一不可,每步都必须执行,且顺序不能调换.像这样的按一定先后顺序依次执行的一种结构,就是算法中最基本、最简单的一种结构,即顺序结构.(引入新课,板书课题——顺序结构)推进新课 新知探究
有红和蓝两个墨水瓶,但现在却把红墨水错装在了蓝墨水瓶中,蓝墨水错装在了红墨水瓶中,要求将其互换,应该怎么解决这个问题?
由于两个墨水瓶中的墨水不能直接交换,所以应该通过引进第三个空墨水瓶的办法进行交换.其算法如下:
S1 取一只空墨水瓶(设其为白色),将红墨水瓶中的蓝墨水装入白墨水瓶中; S2 将蓝墨水瓶中的红墨水装入红墨水瓶中; S3 将白墨水瓶中的蓝墨水装入蓝墨水瓶中.在计算机程序中,与这个例子类似,每个变量都有自己的存放空间,即每个变量都有自己的存储单元,每个存储单元都有各自的“门牌号码”(地址),要交换两个变量的值,需要借助一个新的存储单元来完成.例如若x、y的初值为x=
1、y=2,现在要交换两个变量x、y的值,使得x=
2、y=1,那么我们应该进行如下的操作:
S1 p←x; S2 x←y; S3 y←p.S1的意思是先将x的值赋给变量p,这时存储变量x的单元可以做他用,但是这时x的值并没有发生改变,仍然等于1,当然p的值为1;
S2的意思是再将y的值赋给变量x,这时存储变量y的单元可以做他用,但是这时y的值并没有发生改变,仍然等于2,而原来变量单元x中的值已经发生变化,不再是1,而变成了y的值2;
S3的意思是最后将p的值赋给变量y,这时y的值发生改变,不再是原来的2,而等于p的值1,而变量单元x没有涉及,其中的值没有发生变化,仍然是2,p的值也还是1.经过上面S1、S2、S3三个步骤,我们发现两个变量x、y的值进行了交换,变成了x=
2、y=1.这个算法可以用如图2所示的流程图来清晰地表示:
图2
图3 在图2的流程图中,虚线框内三个处理框中的步骤依次执行,像这种依次进行多个处理的结构称为顺序结构(sequence structure).顺序结构就是如图3的虚线框内的结构,其中A、B两个框是依次执行的.顺序结构是一种最简单、最基本的结构.应用示例
思路1 例1 半径为r的圆的面积计算公式为
2S=πr
当r=10时,写出计算圆面积的算法,画出流程图.分析:本题只需要计算当半径r=10时的圆面积,所以直接取r=10代入圆的面积计算公2式S=πr即可.解:算法如下:
S1 r←10;{把10赋给变量r} 22S2 S←πr;{用公式S=πr计算圆的面积} S3 输出S.{输出圆的面积} 上述算法的流程图可以表示成图4.图4
图5 点评:已知半径求圆的面积,只需要直接代入公式就行了.由于本题只计算半径r=10时的圆面积,所以直接把10赋给变量r即可.如果是求一组或几个半径不同的圆的面积,可以用输入语句代替赋值语句“r←10”,流程图如图5所示.输入语句和赋值语句是两种不同的语句,它们是有区别的.输入语句在每次执行的时候要先输入变量的值,然后才执行下一个语句,每次执行都可以输入不同的变量值,而不需要重新修改计算机程序;赋值语句不需要先输入变量的值,运行时直接就可以往下执行了,每一次执行的时候都只能对当前所赋给的值进行运算,变量的值不能修改,要计算新的数据就必须修改计算机程序.所以输入语句适用于计算几个或一组变量,运行程序后不能自动执行,要等待用户输入变量的值;赋值语句只适用于计算固定的一个数值,运行程序后会自动执行直到输出结果.有条件的学校可以在计算机上执行这两种不同的语句,让学生在实践中对比它们的区别.例2 写出作△ABC的外接圆的一个算法.分析:作圆其实就是确定圆心位置和半径大小,△ABC的外接圆的圆心就是△ABC中两条边的垂直平分线的交点,半径就是这个圆心到任意一个顶点的距离.因此要作△ABC的外接圆,只需要依次作两条边AB和BC的垂直平分线,得到交点,即外接圆的圆心M,然后再以M为圆心,MA为半径作圆即可.图6 解: 算法如下:
S1 作AB的垂直平分线l1; S2 作BC的垂直平分线l2;
S3 以l1与l2的交点M为圆心,以MA为半径作圆,圆M即为△ABC的外接圆.流程图如图6.点评:以上过程通过依次执行S1到S3这三个步骤,完成了作外接圆这一问题,这种依次进行多个处理的结构就是顺序结构.例3 已知一个三角形的三边长分别为2,3,4.利用海伦—秦九韶公式设计一个算法,求出它的面积,画出算法的流程图.分析:如果一个三角形的三边为a,b,c,根据海伦—秦九韶公式可以直接计算这个三角形的面积.令p=abc,则三角形面积为S=p(pa)(pb)(pc).因此这是一个2简单的问题,只需先由a=
2、b=
3、c=4算出p的值,再将它代入公式,最后输出结果S,用顺序结构就能够表达算法.解:流程图如图7:
图7 点评:本题只需要先求出p,然后再求S,依次代入公式即可,用顺序结构容易完成.例4 已知一个数的13%为a,写出求这个数的算法,并画出程序框图.分析:设这个数为b,则b×13%=a,得到b=a÷入a,再计算b.13.算法就按照这个计算方法,先输100
图8 解:算法如下: S1 输入a; S2 计算b=a÷13; 100S3 输出b.程序框图如图8所示: 点评:设计算法时,一般先用自然语言表述,再根据自然语言所描述的算法画程序框图.在逐步熟练后也可以直接画程序框图.对于较复杂的问题,我们建议还是先用自然语言表述算法过程,后画出程序框图.思路2 例1 画出用现代汉语词典查阅“仕”字的程序框图.分析:利用现代汉语词典查字有多种方法,如部首查字法、拼音查字法等,现以部首查字法为例加以说明.先在“部首目录”中查“二画”中“亻”的页码(x),再从x页开始的“亻”部中的“三画”中查找“仕”的页码(y),然后翻到y页,查阅“仕”.解:流程图如图9所示:
图9 点评:查阅词典的过程是一个按部就班的固定流程,所以可以用顺序结构的流程图来清晰地显示操作流程.例2 已知函数f(x)=并画出程序框图.分析:由f(x)=
x,实数a1=f(1),an+1=f(an)(n∈N*),试写出一个求a4的算法,1xx11及a1=f(1),可得到a1==,再由递推公式1x112an+1=f(an)=an(n∈N *)可依次得到a2,a3,a4.1an
图10 解:算法如下: S1 计算a1=11=; 112S2 计算a2=a11; 1a13a21;
1a24a31; 1a35S3 计算a3=S4 计算a4=S5 输出a4.流程图如图10所示: 点评:这个问题实际上就是已知数列的递推公式和首项,然后依次求数列的各项的问题.由于数列的知识在必修5中出现,对于还没有学习必修5的学校,就没有必要介绍数列的知识,对于先学习了数列内容的学校,可以提醒学生,已知数列的递推公式和首项求数列的各项,用计算机可以很容易做到,因此计算机可以代替人做一些重复的机械的运算.知能训练
1.根据程序框图(图11)输出的结果是()
图11 A.3
B.1
C.2
D.0 2.已知华氏温度F与摄氏温度C的转换公式是:(F-32)×
5=C,写出一个算法,并画9出流程图使得输入一个华氏温度F,输出其相应的摄氏温度C.2223.若x1,x2是一元二次方程2x-3x+1=0的两个实根,求x1+x2的值.给出解决这个问题的一个算法,并画出程序框图.xy3,4.写出解方程组yz5,的一个算法,并用流程图表示算法过程.zx4解答:
1.该算法的第1步分别将1、2、3三个数赋给x、y、z,第2步使x取y的值,即x的值变成2,第3步使p取x的值,即p的值也是2,第4步让z取p的值,即z取值也是2,从而得第5步输出时,z的值是2.答案:C 2.算法如下:
S1 输入华氏温度F;
S2 计算C=(F-32)×
5; 9S3 输出C.流程图如图12所示:
图12 3.算法如下: S1 由韦达定理得x1+x 2=2
231,x1x2=; 222
22S2 将x1+x2用x 1+x2和x1x2表示出来;(即x1+x2=(x1+x2)-2x1x2)S3 将x1+x2=231522,x1x2=代入上式,得x1+x2=; 2242S4 输出x1+x2的值.流程图如图13所示:
图13 4.算法如下:
S1 第1,第2个方程不动,用第3个方程减去第1个方程,得到
xy3,yz5, yz1S2 第1,第2个方程不动,第3个方程加第2个方程,得到
xy3,yz5, 2z6S3 将上面的方程组自下而上回代求解,从而解出 x=1,y=2,z=3; S4 输出方程组的解.流程图如图14所示:
图14 点评:顺序结构中的每个步骤是依次执行的,每个语句都会被执行到.因此只需要按照流程图的顺序依次处理即可得到结果.还可以先用自然语言描述问题处理思路和方法,然后把自然语言转化为流程图.课堂小结
1.规范流程图的表示: ①使用标准的框图符号;
②框图一般按从上到下、从左到右的方向画,流程线要规范;
③除判断框和起止框外,其他框图符号只有一个进入点和一个退出点; ④在图形符号内描述的语言要非常简练、清楚.2.依次进行多个处理的结构称为顺序结构.3.画流程图的步骤:
首先用自然语言描述解决问题的一个算法,再把自然语言转化为流程图.作业
1.写出解不等式组x21,(1)的一个算法,并画出流程图.2x15(2)2.春节到了,糖果店的售货员忙极了.请你设计一个算法,帮助售货员算账,已知果糖每千克10.4元,奶糖每千克15.6元,果仁巧克力每千克25.2元.那么依次购买这三种糖果a,b,c千克,应付多少钱?画出流程图.3.输入一个三位正整数,把这个数的十位数字和个位数字对调,输出对调后的三位数.例如输入234,输出243,设计算法并画出流程图.解答:
1.算法如下:
S1 解不等式(1),得x<3; S2 解不等式(2),得x>2;
S3 求上述两个不等式解的公共部分,得原不等式的解集为{2 图15 2.算法如下: S1 输入a,b,c的值; S2 P←10.4a+15.6b+25.2c; S3 输出P.流程图如图16所示: 图16 3.算法如下: S1 输入三位数n; S2 求出n的百位数字a; S3 求出n的十位数字b; S4 求出n的个位数字c; S5 m←100a+10c+b; S6 输出m.流程图如图17所示: 图17 设计感想 对于顺序结构,学生容易理解,教学时让学生自己举一些只包含顺序结构算法的实例.然而这毕竟是学生第一次尝试编写完整的流程图,所以我们可以先选择一些很容易看出操作流程的问题来让学生实践.本课时所选择的例题,如果不是要求画出流程图,则都是很简单的数学问题或实际问题,对于高中学生来说,应该轻而易举地解决.现在老师要做的工作就是不让学生解出具体题目的解答过程和答案,而是要学生说出解题思路以及设计方案,这个思路和方案要简单可行,甚至是还不会做这样的题目的人看了你的方案后,只要按照这个方案所确定的步骤一步一步按部就班地操作,就可以得到结果,这就是流程图所要表示的意思.一个复杂的数学问题的计算机程序是需要各个部门各个学科的人齐心协力共同合作才能够完成,数学工作者的任务就是研究出数学问题或者实际问题的解决方案,即先干什么,再干什么,再把这个方案写成其他学科的人也能够看懂的操作流程,这就是流程图.然后计算机专业人员就把流程图中的每一个步骤翻译成计算机能够识别的计算机语言,这样就成了计算机程序.我们把计算机程序输入电脑,让电脑开始运行程序,这样计算机就会自动根据数学工作者所设计的流程自动执行,从而达到我们的目的.所以我们在画出流程图的时候,未必每一个步骤都要写出完整细致的详细操作方法,只要提供思路即可.例如作业3中,要调换一个三位数的十位数字和个位数字,我们必须先求出十位数字和个位数字分别是多少,因此在算法中有如下步骤: S3 求出n的十位数字b; S4 求出n的个位数字c.对于算法以及流程图,这样就已经够了,至于三位数n的十位数字b到底怎么样求,这个具体的求法就不是流程图部分所要考虑的内容了,换句话说,就是这个问题已经不需要数学工作者来解决,而是计算机研发人员的事情.实际上,这个求法需要用到数学中的取整函数,计算机中已经有了这样的函数了,这个问题对于计算机专业人员来说是很容易的事情.所以,流程图就是要编写出解决问题的步骤,每个步骤具体怎么操作,我们可以不必过于追究,但是我们必须保证这个步骤具有可操作性.因此,学习算法以及编写流程图对学生思维能力的提高是十分有用的,老师和学生都应该引起足够的重视. 流程图-选择结构 教学目标:进一步理解流程图的概念,了解选择结构的概念,能运用流程图表达选择结构;能识别简单的流程图所描述的算法;发展学生有条理的思考与表达能力,培养学生的逻辑思维能力.教学重点:运用流程图表示选择结构的算法. 教学难点:规范流程图的表示以及选择结构算法的流程图. 教学过程: 一.问题情境 问题:某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为 50,0.53,c其中(单位:kg)为行李的500.53(50)0.85,50,重量. 试给出计算费用c(单位:元)的一个算法,并画出流程图. 二.学生活动 探究: 1、算法: 2、流程图: 三.建构数学 1.选择结构的概念: 流程图表示: 2.说明: 思考:教材第10页图1-2-6所示的算法中,哪一步进行了判断? 四.数学运用 例1.设计求解一元二次方程axbxc0(a0)的一个算法,并用流程图表示。 2变题:设计求解方程axbxc0的一个算法,并用流程图表示。 小结: 例2.设计一个求任意数的绝对值的算法,并画出流程图. 小结: 练习:P11 1-3 五.回顾小结 知识: 思想方法: 六.课外作业: P16 5、6 2 算法的概念 教学目的:理解并掌握算法的概念与意义,会用“算法”的思想编制数学问题的算法。教学重点:算法的设计与算法意识的的培养 教学过程: 一、问题情景: 请大家研究解决下面的一个问题 1.两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1 个大人或两个小孩,他们四人都会划船,但都不会游泳。试问他们怎样渡过河去?请写出一个渡河方案。 (通过学生讨论得出渡河方案与步骤如下) S1 两个小孩同船过河去; S2 一个小孩划船回来; S3 一个大人划船过河去; S4 对岸的小孩划船回来; S5 两个小孩同船渡过河去; S6 一个小孩划船回来; S7 余下的一个大人独自划船渡过河去;对岸的小孩划船回来; S8 两个小孩再同时划船渡过河去。 2.一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡? 先列方程组解题,得鸡10只,兔7只; 再归纳一般二元一次方程组的通用方法,即用高斯消去法解一般的二元一次a11x1a12x2b1方程组。 axaxb2222211令Da11a22a21a12,若D0,方程组无解或有无数多解。若D0,则x1b1a22b2a12bab1a21,x2211。 DD由此可得解二元一次方程组的算法。 S1 计算Da11a22a21a12; S2 如果D0,则原方程组无解或有无穷多组解;否则(D0),x1b1a22b2a12bab1a21,x2211 DDS3 输出计算结果x1、x2或者无法求解的信息。 二、数学构建: 算法的概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。 算法的五个重要特征: (1)有穷性:一个算法必须保证执行有限步后结束;(2)确切性:算法的每一步必须有确切的定义; (3)可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成; (4)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。所谓0个输入是指算法本身定出了初始条件。 (5)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。 三、知识运用: 例1.一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物。没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。(1)设计过河的算法;(2)思考每一步算法所遵循的相同之处原则是什么。 解:算法或步骤如下: S1 人带两只狼过河 S2 人自己返回 S3 人带一只羚羊过河 S4 人带两只狼返回 S5 人带两只羚羊过河 S6 人自己返回 S7 人带两只狼过河 S8 人自己返回带一只狼过河 例2.写出一个求有限整数序列中的最大值的算法。解:为了便于理解,算法步骤用自然语言叙述: S1 先将序列中的第一个整数设为最大值; S 2将序列中的下一个整数值与“最大值”比较,如果它大于此“最大值”,这时就假定“最大值”就是这个整数; S3 如果序列中还有其它整数,重复S2; S4 在序列中一直进行到没有可比的数为止,这时假定的“最大值”就是这个序列中的最大值。 试用数学语言写出对任意3个整数a、b、c中最大值的求法 S1 max=a S2 如果b>max,则max=b S3 如果c>max,则max=c, S4 max就是a、b、c中的最大值。 四、学力发展: 1.给出求100!123100的一个算法。 2.给出求点P(x0,y0)关于直线AxByC0的对称点的一个算法。 五、课堂小结: 算法的概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。 算法的五个重要特征: (1)有穷性:一个算法必须保证执行有限步后结束;(2)确切性:算法的每一步必须有确切的定义; (3)可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成; (4)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。所谓0个输入是指算法本身定出了初始条件。 (5)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。 六、课外作业: 1.优化设计P3-4:变式练习1-10题。2.课本P6:练习1-4题 算法的概念(教学设计) 一、教材背景分析 1.教材的地位和作用 《 算法的概念》是全日制普通高级中学教科书人教A版必修3第一章《算法初步》的第一节内容,《算法初步》是课程标准的新增内容,它是数学及其应用的重要组成部分,是计算科学的重要基础,在信息技术高度发达的现代社会,算法思想应该是公民必备的科学素养之一.而《算法的概念》则是《算法初步》的奠基石,它非常重要,但并不神秘.新教材的编写特别强调了知识的螺旋形上升,所以在前面的学习中,已经让学生积累了大量的算法的实际经验,这个重要的数学概念其实早已存在于学生的意识之中,而且在不同场合都已经不自觉的“实际使用”,只是没有明朗化.此时引入算法概念可以说是水到渠成,教师的责任就是为学生建立概念修通渠道.让学生借助他们已有的大量经验抽象出算法的概念并认识其特点;再依据算法的概念和特点来设计一个具体的算法,进一步深化对概念的认知;最后通过典型解题步骤提炼算法的过程,使算法思想进一步得到升华.这一过程不仅有利于培养学生的思维能力、理性精神和实践能力;也有利于学生理解构造性数学,培养其数学应用意识. 本节是起始课,不仅应让学生体会概念,认识到这一概念的重要性,还要为进一步的学习程序框图,算法的基本结构和语句奠定基础.而且算法思想是逻辑数学最重要的体现形式.这一切都决定了本节课的重要地位. 2.学情分析 知识结构:学生在以前的学习和生活中已经认识过大量的算法实例,本节课就是在此基础上使学生进一步理解和提炼算法的概念,体会算法的思想. 心理特征:高二的学生已经具备了分辨是非的能力,高度的语言概括能力,能够从具体问题中去体会和提炼重要数学思想. 3.教学重点与难点 重点:理解算法的概念及其特点,体会算法思想,能用自然语言描述算法. 难点:根据算法实例抽象概括算法的概念和特点;依据概念设计算法. 关键:算法思想的渗透. 二、教学目标 1.通过对学生已经学习过的一些算法实例的再现,让学生体会算法思想,了解算法含义,初步形成算法概念的雏形,进一步培养学生归纳总结、提炼概括的能力. 2.通过对具体算法实例的挖掘,引导学生进一步认识算法的特征、完善算法的概念,进一步培养学生理性思维能力. 3.通过算法实例设计的实践过程,让学生进一步完善算法的理解,准确把握算法的基本特征,学会用自然语言描述算法,进一步培养学生逻辑思维能力. 4.通过具体实例渗透算法的基本结构和程序框图,为学生后继学习分散难点,同时通过具体情境和语言的激励,激发学生后继学习的激情. 5.通过典型解题步骤抽象出算法这一过程的设计,进一步渗透算法的思想,从而增强利用算法来解决问题的意识. 三、教法选择和学法指导 教法:问题引导、合作探究. 学法:数学学习实际上是“认知结构”的完善过程,算法的学习就体现这一过程:从经验中提炼概念,再从设计运用中深化对概念的认知,最后从算法的提炼中进一步渗透算法的思想.这都需要教师的层层引导,渐次递进. 四、教学基本流程设计 五、教学过程 (一)轶事开篇,巧妙设境引深思 有一天希尔伯特邀请朋友们来家聚会,眼看客人就要登门,他的夫人凯娣却发现希尔伯特还系着一根旧领带,便催促他说赶紧上二楼换根领带.过了片刻,客人陆续登门,可就是不见希尔伯特下楼来,夫人便悄悄吩咐管家赶紧上楼去请希尔伯特下来.管家来到他的房间,却发现希尔伯特已在床上睡熟了.原来,对于希尔伯特来说,上了二楼,解下领带,下一个程序便是上床入睡.所以,他严格按照既定程序酣然入睡了. 在我们的数学领域中,太多问题的解决都需要按照一定的规则、遵循严格的步骤,事实上在高一的学习中,大家就应该发现了这一现象. (二)温故知新,拨云见雾初识真 1.“坐标方法”解决几何问题的三部曲: 第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面 几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论. 2.求圆的方程常用“待定系数法”,那么它的大致步骤是怎样的? 第一步:根据题意,选择标准方程或一般方程; 第二步:根据条件列出关于a,b,r或D,E,F的方程组; 第三步:解出a,b,r或D,E,F,代入标准方程或一般方程. 3.实际问题使用数学建模的步骤: 4.给点精确度,用二分法求函数零点近似值的步骤如下: 第一步:确定区间[a,b],验证f(a)f(b)0; 第二步:求区间(a,b)的中点c; 第三步:计算f(c); (1)若f(c)0,则c就是函数零点; (2)若f(a)f(c)0,则令bc,(此时零点x0(a,c));(3)若f(c)f(b)0,则令ac,(此时零点x0(c,b)).第四步:判断是否达到精确度,即若ab,则得到零点近似值a或b;否则重复2~4. 通过观察以上算法实例,初步形成概念的雏形:算法是按一定规则解决某一类问题的步骤. (三)共论经典,曲径通幽玉妆成 选取案例4中的算法做更深入的研究. 问题1:按照此算法,我们是否能够借助计算机来寻求方程的近似值呢? 我们必须确保让计算机执行的程序的每一个步骤都明明白白没有歧义,也就是步骤必须明确 问题2:我们可以把精确度取消吗? 算法的步骤必须是有限的,它可以进行循环结构的运算,但必须有终点. 在数学中,经过这样一补充,我们就得到了完整的算法概念: 算法通常是指按照一定的规则解决某一类问题的明确和有限的步骤. (四)实例设计,分层推进探玄机 问题:如何设计判断任意大于2的正整数n是否是质数的算法? 1.判断11是否为质数的算法: 第一步:用2除11,得到余数为1,因为余数不为0,所以2不能整除11. 第二步:用3除11,得到余数为2,因为余数不为0,所以3不能整除11. 第三步:用4除11,得到余数为3,因为余数不为0,所以4不能整除11. 第四步:用5除 11,得到余数为1,因为余数不为0,所以5不能整除11. 第五步:用6除11,得到余数为5,因为余数不为0,所以6不能整除11. 第六步:用7除11,得到余数为4,因为余数不为0,所以7不能整除11. 第七步:用8除11,得到余数为3,因为余数不为0,所以8不能整除11. 第八步:用9除11,得到余数为2,因为余数不为0,所以9不能整除11. 第九步:用10除11,得到余数为1,因为余数不为0,所以10不能整除11. 所以11是质数. 2.判断1999是否是质数的算法: 第一步:令i2; 第二步:用i除1999,得到余数r. 第三步:判断“r0”是否成立.若是,则1999不是质数;否则,将i的值增加1,仍用i表示; 第四步,判断“i1998”是否成立.若是,则1999是质数,结束算法;否则,返回第三步. 3.判断任意大于2的正整数n是否是质数的算法: 第一步:给定大于2的整数n; 第二步:令i2; 第三步:用i除n,得到余数r. 第四步:判断“r0”是否成立.若是,则n不是质数;否则将i的值增加1,仍用i表示; 第五步,判断“i(n1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步. 回顾刚才研究的整个过程,从11,再到1999,最后到任意大于2的正整数n,对他们的判断方法具有高度的一致性,这其实反映了算法的一个重要特征----普适性. (五)见微知著,算法思想再升华 在平常的学习中,是否可以通过一些典型问题的解法,从具体到抽象,总结出同类型问题共有的解题步骤和程序呢?现在就请大家根据一些典型习题的解题方法来寻求其对应的算法. (六)华章重奏,雏鹰振翅欲高飞 因为本节课是一章的起始课,它的功能不仅仅是本节知识内容的落实,还需要对后面的学习起到提纲挈领的作用.所以归纳小结不仅对今天所学知识:算法的概念、特点,如何设计算法使用算法思想等作了简要回顾,还对即将学习的内容和作用作了介绍,使学生对后续的学习充满了信心和兴趣. (七)目标检测,概念应用悟新知 (1)写出求一元二次方程ax2bxc0(a0)根的一个算法. (2)任意给定一个对于1的正整数n,设计一个算法求出n的所有因数. 六、目标检测设计 (一)课堂检测 根据以下典型解题方法寻求此类问题的算法: xy35,1.解二元一次方程组:2x4y94.(1)(2)解:第一步:(1)4(2),得2x46,(3)第二步,解(3)得x23,第三步:(2)(1)2,得2y24,(4)第四步,解(4)得y12,x23,第五步,所以方程组解为 y12.1π2.画出函数y2sin(x)的简图: 36解:第一步:先把正弦曲线ysinx上所有的点向右平行移动象. ππ个单位长度,得到ysin(x)的图661π第二步:再把后者所有点的横坐标伸长到原来的3倍(纵坐标不变),得到ysin(x)的图象; 361π1π第三步:再把ysin(x)图象上所有点的纵坐标伸长到原来的2倍,而得到函数y2sin(x)3636的图象. 3.解下列不等式:(1)x22x30;(2)4x24x10;(3)3x22x30. 解:(1)4120.方程x22x30无实根.又yx22x3的图象开口向上,所以原不等式的解集为R. 1(2)0.方程4x24x10的根为x1x2.21∴原不等式的解集为{xxR,x}. 2(3)400.方程3x22x30的根为x1110110,x2.33110110∴原不等式的解集为xx,或x. 33 4.判断下列函数的奇偶性: 1x22x(1)f(x)x;(2)f(x)x;(3)f(x). xx24解:(1)对于函数f(x)x4,其定义域为(,).因为对于定义域内每一个x,都有f(x)(x)4x4f(x),所以f(x)x4是偶函数. (2)对于函数f(x)x1,其定义域为xxR,x0.因为对于定义域内每一个x,都有xf(x)x111(x)f(x),所以f(x)x是奇函数. xxxx22x(3)对于函数f(x),其定义域为{xxR,x2}.因为对其定义域不具备对称性,所以函x2数f(x)x4非奇非偶. 设计意图:促进学生进一步了解算法的概念及特征,巩固学生已领会的算法思想并促进其有意识的运用. (二)课后检测: (1)写出求一元二次方程ax2bxc0(a0)根的一个算法. (2)任意给定一个对于1的正整数n,设计一个算法求出n的所有因数. 设计意图:进一步巩固概念的认知,检测学生是否能用自然语言正确表达算法. 算法的含义 教学目标:通过对解决具体问题过程与步骤的分析,理解并掌握算法的概念与意义,会用“算法”的思想编制数学问题的算法。 教学重点:通过实例体会算法思想,初步理解算法的含义. 教学难点:算法概念以及用自然语言描述算法. 课 型:新授课 教学手段:多媒体 教学过程: 一、创设情境 请大家研究解决下面的一个问题 问题1.写出你在家里烧开水的过程.一般地,第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.问题2.两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1 个大人或两个小孩,他们四人都会划船,但都不会游泳。试问他们怎样渡过河去?请写出一个渡河方案。(通过学生讨论得出渡河方案与步骤如下) S1 两个小孩同船过河去; S2 一个小孩划船回来; S3 一个大人划船过河去; S4 对岸的小孩划船回来; S5 两个小孩同船渡过河去; S6 一个小孩划船回来; S7 余下的一个大人独自划船渡过河去;对岸的小孩划船回来; S8 两个小孩再同时划船渡过河去。 二、活动尝试 广义地说为了解决某一问题而采取的方法和步骤,就称之为算法。做任何事情都有一定的步骤。例如:描述太极拳动作的图解,就是“太极拳的算法”;一首歌的乐谱,可以称之为该歌曲的算法。从小学到高中遇到的算法绝大多数都与“计算”有关的问题。 三、师生探究 例1:给出求1+2+3+4+5的一个算法.解: 算法1 按照逐一相加的程序进行 第一步:计算1+2,得到3; 第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10; 第四步:将第三步中的运算结果10与5相加,得到15.算法2 可以运用公式1+2+3+„+n= 第一步:取n=5; 第二步:计算 n(n1)直接计算 2n(n1); 2 第三步:输出运算结果.算法3 按照累积相加的程序进行 第一步:让S=0,I=1 第二步:将S+I的值赋给S,I的值增加1 第三步:如果I比5大,则输出S,否则转第二步.(说明算法不唯一)例2:(课本第2页,解二元一次方程组的步骤) (可推广到解一般的二元一次方程组,说明算法的普遍性) 四、数学理论 通过对以上几个问题的分析,我们对算法有了一个初步的了解.在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这些步骤来解决问题,通常把这些步骤称为解决这些问题的算法.在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.问题:我们要解决解决一类问题,我们可以抽象出其解题步骤或计算序列,他们有什么样的......要求? (1)算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系。算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决。(2)算法的五个特征 ①有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。 ②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。 ③逻辑性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。 ④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限的、事先设计好的步骤加以解决。 五、巩固运用 例3:写出求1×2×3×4×5的算法。 步骤1:先求1×2,得到结果2; 步骤2:将步骤1得到的结果2再乘以3,得到6; 步骤3:将步骤2得到的结果6再乘以4,得到结果24; 步骤4:将步骤3得到的结果24再乘以5,得到120。例4:写出一个求整数a、b、c最大值的算法 解:S1 先假定序列中的第一个数为“最大值”。 S2 将序列中的下一个整数值与“最大值”比较,如果大于“最大值”,这时就假定这个数为“最大值”。 S3 如果序列中还有其它整数,重复S2。 S4 直到序列中没有可比的数为止,这时假定的“最大值”就是序列的最大值。即 S1 max=a。 S2 如果b>max,则max=b。S3 如果c>max,则max=c。S4 max就是a、b、c的最大值。 六、回顾反思 1、算法的定义: 算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。 2、算法的五大特征: ⑴逻辑性: 算法应具有正确性和顺序性。算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的基础,只有执行完前一步才能进行下一步,并且每一步都有确切的含义,组成了具有很强的逻辑性的序列。 ⑵概括性: 算法必须能解决一类问题,并且能重复使用。⑶有限性: 一个算法必须保证执行有限步后结束 ⑷非唯一性:求解某个问题的算法不一定是唯一的,对于一个问题可以有不同的算法。⑸普遍性: 许多的问题可以设计合理的算法去解决。如:如用二分法求方程的近似零点,求几何体的体积等等。 3、算法的表述形式: ⑴用日常语言和数学语言或借助于形式语言(算法语言)各处精确的说明。⑵程序框图(简称框图)。⑶程序语言。 七、课后练习 1.下列关于算法的说法中,正确的有()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果。A、1个 B、2个 C、3个 D、4个 2.在数学中,现代意义上的算法是指()A.用阿拉伯数字进行运算的过程 B.解决某一类问题的程序或步骤 C.计算机在有限步骤之内完成,用来解决某一类问题的明确有效的程序或步骤 D.用计算机进行数学运算的方法 3.你要乘火车去外地办一件急事,请你写出从自己房间出发到坐在车厢内的三步主要算法S1,S2,S3 . 4.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.5.有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题。分析:由于两个墨水瓶中的墨水不能直接交换,故可以考虑通过引入第三个空墨水瓶的办法进行交换。 6.写出求过两点M(-3,-1)、N(2,5)的直线与坐标轴围成面积的一个算法。参考答案 1.C 2.C 3.乘车去火车站、买车票、凭票上车对号入座.4.第一步:输入任意正实数r;第二步:计算Sr;第三步:输出圆的面积S.5.解:算法步骤如下: 第一步:取一只空的墨水瓶,设其为白色; 第二步:将黑墨水瓶中的蓝墨水装入白瓶中; 2第三步:将蓝墨水瓶中的黑墨水装入黑瓶中; 第四步:将白瓶中的蓝墨水装入蓝瓶中; 第五步:交换结束。6.解:算法: 第一步:取x1=-3,y1=-1,x2=2,y2=5; 第二步:计算yy1xx1; y2y1x2x1第三步:在第二步结果中令x=0得到y的值m,得直线与y轴交点(0,m); 第四步:在第二步结果中令y=0得到x的值n,得直线与x轴交点(n,0); 第五步:计算S=1|m||n|; 2第六步:输出运算结果。第二篇:高中数学 1.2 流程图-选择结构教案 苏教版必修3
第三篇:高中数学 1.1.1 算法的概念教案2 新人教A版必修3
第四篇:高中数学 第一章《算法初步》算法的概念教学设计 新人教版必修3
第五篇:高中数学1.1算法的含义教案6苏教版必修3