第一篇:【优教通,同步备课】高中数学(北师大版)必修五教案:1.2 等差数列 第一课时参考教案[定稿]
§2.1 等差数列
(一)教学目标
1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;
2.过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。教学重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;
会用公式解决一些简单的问题。
教学难点:概括通项公式推导过程中体现出的数学思想方法。教学过程:
创设情境 导入新课
上节课我们学习了数列。在日常生活中,人口增长、鞋号问题、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。
先看下面的问题:
为了使孩子上大学有足够的费用,一对夫妇从小孩上初一的时候开始存钱,第一次存了5000元,并计划每年比前一年多存2000元。若小孩正常考上大学,请问该家长后5年每年应存多少钱?
引导学生行先写出这个数列的前几项:7000,9000,11000,13000,15000 观察这个数列项的变化规律,提出生活中这样样问题很多,要解决类似的问题,我们有必要研究具有这样牲的数列——等差数列 师生互动 新课探究
像这样的数列你能举出几个例子吗?
0,5,10,15,20,…… ① 18,15.5,13,10.5,8,5.5 ③ 48,53,58,63 ② 3,3,3,3,3,…… ④
看这些数列有什么共同特点呢?(由学生讨论、分析)
anan1dan2ddan22dan3d2dan33d…a1(n1)d
所以 ana1(n1)d 注意:
(1)在ana1(n1)d中n,an,a1,d四数中已知三个可以求出另一个(方程思想)。
(2)由上述关系还可得:anam(nm)d
(3)若an是等差数列,且k,l,m,nN,klmn,则akalaman 特例:(1)ankank2an(2)a1ana2an1a3an2.....三、例题:
例1:判断下面数列是否为等差数列.(1)an2n1(2)an(1)n
例2:已知等差数列an中,a11,d2,求通项公式an.例3:(1)求等差数列9,5,1,……的第10项
(2)已知在等差数列an,an4n3,求首项a1和公差d 例4:已知在等差数列an中,a520,a2035,求通项公式an.注意在ana1(n1)d中n,an,a1,d四数中已知三个可以求出另一个。
五、小结:
1、等差数列的定义an1and
2、掌握推导等差数列通项公式的方法
3、等差数列通项公式:ana1(n1)d anam(nm)d
六、课堂练习
1、求等差数列宁主义,7,11,……的第4项与第11项 2、100是不是等差数列2,9,16,……的项,如果是,是第几项,如果不是,说明原因
作业:P19习题1—2A组第2、7题
第二篇:高中数学 1.2《余弦定理》教案 北师大版必修5
江苏省邳州市第二中学高二数学 1.2《余弦定理(2)》教案
【三维目标】:
一、知识与技能
1.学会利用余弦定理解决有关平几问题及判断三角形的形状,掌握转化与化归的数学思想; 2.能熟练地运用余弦定理解斜三角形;
二、过程与方法
通过对余弦定理的运用,培养学生解三角形的能力及运算的灵活性
三、情感、态度与价值观
培养学生在方程思想指导下处理解三角形问题的运算能力; 【教学重点与难点】:
重点:利用余弦定理判断三角形的形状以及进行三角恒等变形; 难点:利用余弦定理判断三角形的形状以及进行三角恒等变形 【学法与教学用具】:
1.学法:
2.教学用具:多媒体、实物投影仪.【授课类型】:新授课 【课时安排】:1课时 【教学思路】:
一、创设情景,揭示课题
1.余弦定理的内容?
2.如何利用余弦定理判断锐角、直角、钝角? 2.利用余弦定理可解决哪几类斜三角形的问题?
二、研探新知,质疑答辩,排难解惑,发展思维
例1(教材P在ABC中,AM是BC边上的中线,求证:AM16例6)
12(AB2AC2)BC2 2例2(教材P15例5)在ABC中,已知sinA2sinBcosC,试判断三角形的形状
a2b2sin(AB)例3 在ABC中,证明: sinCc2例4 已知三角形一个内角为60,周长为20,面积为103,求三角形的三边长。
例5三角形有一个角是60,夹这个角的两边之比是8:5,内切圆的面积是12,求这个三角形的面积。
四、巩固深化,反馈矫正
1.在ABC中,设CBa,ACb,且|a|2,|b|3,a•b3,则AB_____
ab02.在ABC中,已知C60,a、b、c分别为角A、B、C所对的边,则的值等于bcca00________
五、归纳整理,整体认识
让学生总结本节课所学的内容及方法(1)知识总结:(2)方法总结:
六、承上启下,留下悬念 1.书面作业
七、板书设计(略)
八、课后记:
第三篇:高中数学 2.2《等差数列》教案 新人教A数学必修5
2.2等 差 数 列(1)教学目标 1.明确等差数列的定义.
2.掌握等差数列的通项公式,解决知道an,a1,d,n中的三个,求另外一个的问题
3.培养学生观察、归纳能力. 教学重点 1.等差数列的概念; 2.等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用 教学方法 :启发式数学,归纳法.一.知识导入
1.观察下列数列,写出它的一个通项公式和递推公式,并说出它们的特点.1)2,4,6,8,10 … 2)15,14,13,12,11 … 3)2,5,8,11,14 … 2.课本41页的三个实际问题
【归纳】共同特点:每一个数列,从第二项起与前一项的差相同。二.等差数列
1.定义: 一般地,如果一个数列从第2项起,每一项与前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。以上三个例子的公差d分别为2,-1,3.定义说明:1)同一个常数的含义.2)公差d的取值范围.2.等差数列的通项公式: 设数列{an}是首项为a1,公差为d的等差数列.由定义有:思路1: a2a1a3a2anan1d
a2a1d
a3a2da12d
a4a3da13d……………
anan1da1(n1)d,nN*
思路2: a2a1d a3a2d
a4a3d
……………
an1an2d
anan1d
两端相加:
ana1(n1)d nN故等差数列的通项公式为:
*
ana1(n1)d nN其中:
*
an为第n项,a1为首项,d为公差.(共有四个量,知三求一)利用等差数列的通项公式验证三个引例.广义通项公式: anam(nm)d
3.等差数列的递推公式: an1and,nN*
三.例题分析
1.(1)求等差数列8,5,2,…的第20项.(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
2.在等差数列{an}中,已知a510,a1231求首项a1与公差d
3.已知数列{an}的前n项和公式(1)求数列{an}的通项公式.(2)证明
Snn2n
2{an}是等差数列.m1,m3,m9 4.已知等差数列的前三项分别为(1)求m的值.(2)求该数列的第10项.5.梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。
解设an表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知: a1=33, a12=110,n=12 ∴a12a1(121)d,即时10=33+11d
解之得:d7
因此,a233740,a340747,a454,a561,a668,a775,a882,a989,a1096,a11103, 答:梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm.四.小结 五.作业
1.已知下列等差数列,求通项公式(1)1,4,7,10…
(2)32, 26, 20, 14…(3)127, , … 35152.已知等差数列{an}中(1)a34,a716,求a1,d ,11a,d求a5(2)232(3)
an
a32,d4,an30求n
2S2n4n 3.数列{an}中,前n项和n(1)求通项公式an
(2)证明{an}是等差数列
【探究】设{an}是首项为m公差为d的等差数列,从中选取数列的第*kN()构成一个新的数列{bn},你能求出{bn}的通项公式吗?
4k1项,
第四篇:【优教通,同步备课】高中数学(北师大版)选修2-1教案:第1章 全称量词与存在量词 参考教案2
1.3 全称量词与全称命题
一、创设情境
在前面的学习过程中,我们曾经遇到过一类重要的问题:给含有“至多、至少、有一个┅┅”等量词的命题进行否定,确定它们的非命题。大家都曾感到困惑和无助,今天我们将专门学习和讨论这类问题,以解心中的郁结。问题1:请你给下列划横线的地方填上适当的词
①一
纸;②一
牛;③一
狗;④一
马;⑤一
人家;⑥一
小船 分析:①张②头③条④匹⑤户⑥叶
什么是量词?这些表示人、事物或动作的单位的词称为量词。汉语的物量词纷繁复杂,又有兼表形象特征的作用,选用时主要应该讲求形象性,同时要遵从习惯性,并注意灵活性。不遵守量词使用的这些原则,就会闹出“一匹牛”“一头狗”“一只鱼”的笑话来。
二、活动尝试
所有已知人类语言都使用量化,即使是那些没有完整的数字系统的语言,量词是人们相互交往的重要词语。我们今天研究的量词不是究其语境和使用习惯问题,而是更多的给予它数学的意境。问题2:下列命题中含有哪些量词?(1)对所有的实数x,都有x2≥0;(2)存在实数x,满足x2≥0;
(3)至少有一个实数x,使得x2-2=0成立;(4)存在有理数x,使得x2-2=0成立;
(5)对于任何自然数n,有一个自然数s使得s=n×n;(6)有一个自然数s使得对于所有自然数n,有s=n×n;
分析:上述命题中含有:“所有的”、“存在”、“至少”、“任何”等表示全体和部分的量词。
三、师生探究
命题中除了主词、谓词、联词以外,还有量词。命题的量词,表示的是主词数量的概念。在谓词逻辑中,量词被分为两类:一类是全称量词,另一类是存在量词。
等词可统称为全称量词,记作x、y等,表示个体域里的所有个体。(2)存在量词
日常生活和数学中所用的“存在”,“有一个”,“有的”,“至少有一个”等词统称为存在量词,记作x,y等,表示个体域里有的个体。
3.含有全称量词的命题称为全称命题,含有存在量词的命题称为存在性命题。全称命题的格式:“对M中的所有x,p(x)”的命题,记为:xM,p(x)存在性命题的格式:“存在集合M中的元素x,q(x)”的命题,记为:xM,q(x)注:全称量词就是“任意”,写成上下颠倒过来的大写字母A,实际上就是英语“any”中的首字母。存在量词就是“存在”、“有”,写成左右反过来的大写字母E,实际上就是英语“exist”中的首字母。存在量词的“否”就是全称量词。
五、巩固运用
例1判断以下命题的真假:
(1)xR,x2x(2)xR,x2x
(3)xQ,x280(4)xR,x220 分析:(1)真;(2)假;(3)假;(4)真; 例2指出下述推理过程的逻辑上的错误: 第一步:设a=b,则有a2=ab
第二步:等式两边都减去b2,得a2-b2=ab-b2 第三步:因式分解得(a+b)(a-b)=b(a-b)第四步:等式两边都除以a-b得,a+b=b 第五步:由a=b代人得,2b=b 第六步:两边都除以b得,2=1 分析:第四步错:因a-b=0,等式两边不能除以a-b
第六步错:因b可能为0,两边不能立即除以b,需讨论。
心得:(a+b)(a-b)=b(a-b)a+b=b是存在性命题,不是全称命题,由此得到的结论不可靠。
同理,由2b=b2=1是存在性命题,不是全称命题。
例3判断下列语句是不是全称命题或者存在性命题,如果是,用量词符号表达出来。
第五篇:【优教通,同步备课】高中数学(北师大版)选修2-1教案:第2章 空间向量的运算 参考教案1
2.2 空间向量的运算 教案
一、教学目标:
1、知识目标:(1)空间向量;(2)相等的向量;
(3)空间向量的加减与数乘运算及运算律;
2、能力目标:
(1)理解空间向量的概念,掌握其表示方法;
(2)会用图形说明空间向量加法、减法、数乘向量及它们的运算律;(3)能用空间向量的运算意义及运算律解决简单的立体几何中的问题.
3、德育目标:
学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.
二、教学重点:空间向量的加减与数乘运算及运算律.
教学难点:应用向量解决立体几何问题.
三、教学方法:讨论式.
四、教学过程
(Ⅰ)、复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?
[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.
[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.
[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:
OPλa(R)
[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律. [生]空间向量加法与数乘向量有如下运算律: ⑴加法交换律:a + b = b + a;
⑵加法结合律:(a + b)+ c =a +(b + c);(课件验证)⑶数乘分配律:λ(a + b)=λa +λb.
[师]空间向量加法的运算律要注意以下几点:
⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:
A1A2A2A3A3A4An1AnA1An
因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.
⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:
⑶两个向量相加的平行四边形法则在空A1A2A2A3A3A4An1AnAnA10.间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则. 例1已知平行六面体ABCDA'B'C'D'(如图),化简下列向量表达式,并标出化简结果的向量:
⑴ABBC; ⑵ABADAA';
1⑶ABADCC'
21⑷(ABADAA'). 3说明:平行四边形ABCD平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD—A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.
解:(见课本P27)说明:由第2小题可知,始点相同且不在同一个平面内的三