第一篇:《因式分解》复习教案范文
因式分解复习教案
好好教育
学生 简天赐 任课教师 苏老师 2016.12.10 教学目标:
1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.教学重、难点:用提公因式法和公式法分解因式.教学方法:活动探究法
教学过程:
引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?
知识详解
知识点1 因式分解的定义
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】(1)因式分解与整式乘法是相反方向的变形.例如:
(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?
知识点2 提公因式法
多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).探究交流
下列变形是否是因式分解?为什么?
(1)3x2y-xy+y=y(3x2-x);
(2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析
师生互动
例1 用提公因式法将下列各式因式分解.(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);
分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.小结
运用提公因式法分解因式时,要注意下列问题:
(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a-b)n=(b-a)n(n为偶数).(3)因式分解最后如果有同底数幂,要写成幂的形式.学生做一做
把下列各式分解因式.(1)(2a+b)(2a-3b)+(2a+5b)(2a+b);(2)4p(1-q)3+2(q-1)2
知识点3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.探究交流
下列变形是否正确?为什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.例2 把下列各式分解因式.(1)(a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.分析:本题旨在考查用完全平方公式分解因式.学生做一做
把下列各式分解因式.(1)(x2+4)2-2(x2+4)+1;
(2)(x+y)2-4(x+y-1).综合运用
例3 分解因式.(1)x3-2x2+x;(2)x2(x-y)+y2(y-x);
分析:本题旨在考查综合运用提公因式法和公式法分解因式.小结
解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式.是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止.探索与创新题
例4 若9x2+kxy+36y2是完全平方式,则k=
.分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差).学生做一做
若x2+(k+3)x+9是完全平方式,则k=
.课堂小结
用提公因式法和公式法分解因式,会运用因式分解解决计算问题.各项有“公”先提“公”,首项有负常提负,某项提出莫漏“1”,括号里面分到“底”。
自我评价
知识巩固
1.若x2+2(m-3)x+16是完全平方式,则m的值等于()
A.3
B.-5
C.7.D.7或-1
2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是()
A.2
B.4
C.6
D.8
3.分解因式:4x2-9y2=
.4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.5.把多项式1-x2+2xy-y2分解因式
思考题
分解因式(x4+x2-4)(x4+x2+3)+10.总结: 简天赐 基础薄弱 需要循序渐进 步步扎实前进
第二篇:因式分解复习课教案
因式分解复习课教学设计 大邑外国语学校晏春霞
中考目标:因式分解是代数的重要内容,它是整式乘法的逆变形,在通分、约分、解方程以及三角函数等恒等变形中有直接应用。
教学重点及难点:掌握提取公因式法、公式法、分组分解法、十字相乘法四种基本方法,并能熟练运用。教学过程:
一、中考知识梳理:
1、什么叫做因式分解:
把一个多项式化为几个整式的积的形式(恒等变形)
2、分解因式的基本方法:(1)、提(提取公因式法);(2)、用(运用公式法、十字相乘法);(3)、分组(分组分解法)
二、中考题型例析:
1、因式分解的识别
下列各式由左边到右边的恒等变形中,是分解因式的是()①(x+y)(x-y)=(x-y)(x+y)②a(x+y)=ax+ay
③x2-4x+4=x(x-4)+4 ④x2-4=(x+2)(x-2)⑤x2-x+=x2(1-)
2、灵活进行因式分解
题型一:直接提公因式
(1)-12x3z+18x4y
(2)3x(a-b)+2y(b-a)题型二:直接用公式
(1)x2-9y2
(2)4x2+2x+ 题型三:先提公因式再套公式
(1)2x2-8
(2)-a3+a2b-ab2
(3)a2b+2ab+b
(4)x4y2-6x2y2-27y2
题型四:先分组再套公式
(1)x2-y2-3x-3y
(2)16+8xy-16x2-y2 题型五:把代数式作为一个整体(1)(a+b)3-4(a+b)
(2)(x+y)2-4(x+y-1)
3、因式分解与分式的联系
(1)当x2-4x+1=0时,求-(1+)的值(2)当x取何值式,分时有意义。(3)当x取何值式,分时的值为零。
4、因式分解与方程的联系
(1)解下列方程:
x2-4x-12=0
(2)若2x3-x2-5x+k有一个因式x-2,求k的值
三、全国各地中考题型
1、(2012呼和浩特,4,3分)下列各因式分解正确的是()
A.–x2+(–2)2=(x–2)(x+2)B.x2+2x–1=(x–1)2
C.4x2–4x+1=(2x–1)2
D.x2–4x=2(x+2)(x–2)
2、(2011江苏省无锡市,3,3′)分解因式的结果是()A.
B.x2+1
C.
D.
3、(2012北京,9,4)分解因式:.
4、(2012福州,11,4分,)分解因式:x2-16=
.5、(2011山东省潍坊市,题号13,分值3)分解因式:
6、若是一个完全平方式,则m的值是
7、若9x2+kxy+36y2是完全平方式,则k=
8、当x取何值式,分时的值为零
9、当x取何值式,分时有意义
10、化简(1+)÷
11若x3+5x2+7x+a有一个因式x+1,求a的值
12、已知a,b,c是△ABC的三边的长,且满足:a2+2b2+c2-2b(a+c)=0,试判断此三角形的形状。
13、把下列各式分解因式:
(1)4x4-25y2
(2)
(3)81(a-b)2-16(a+b)2
(4)16(b-c)2-a2(5)(6)(7)(8)(9)(10)(11)
(12)
四、反思小结:(1)、对象:因式分解是把一个多项式进行恒等变形;(2)、方向:因式分解与整式的乘法是互逆的过程,具有方向性;(3)、目标:是要把一个多项式化成几个整式的乘积;(4)、最终:把一个多项式分解到不能再分解为止.
第三篇:因式分解教案
因式分解——提取公因式法
【教学目标】
1、理解因式分解的意义,知道因式分解和整式乘法的互逆关系
2、理解多项式“公因式”和“最大公因式”的概念,并会确定多项式的最大公因式
3、初步掌握如何用提取公因式法来分解因式
【教学重点、难点】
1、正确找出多项式各项的最大公因式
2、正确找出多项式提取公因式后剩下的因式
3、知道因式分解和整式乘法互为逆运算
【教学过程】
一、复习旧知、引入新知
1、计算下列各式:
2、你能把下列各式写成两式积的形式吗? a(b+c)=_____________ab+ac=_____________
x(2x-1)=____________2x2-x=____________
(m+5)(m-5)=_________m-25=____________
m(a+b +c)=__________am+bm+cm=___________
二、新课教授
(一)因式分解
1、把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫把这个多项式分解因式。
2、提问:整式的乘法和因式分解有什么联系和区别呢?
(整式的乘法和因式分解式是方向相反的恒等变形,他们互为逆运算)
(二)、多项式的公因式和最大公因式
1、多项式的公因式(m是am+bm+cm 的公因式)
2、找找公因式
3、归纳:如何正确找到多项式的最大公因式
① 各项系数的最大公因数
② 各项都含有的相同字母
③ 相同字母的“最低次幂”
(三)、提取公因式法
例1:把8a3b2+12ab3c分解因式
针对练习见学案
例2把2a(b+c)– 3(b+c)分解因式
针对练习见学案
三、当堂检测
四、课堂小结
今天你学到了哪些新知识?
① 什么叫因式分解
② 因式分解和整式乘法的关系
③ 如何找多项式的最大公因式
④ 用提取公因式法分解因式时,在提取公因式后怎么确定剩下的因式
五、作业布置
习题14.3第一、第四题(1)
第四篇:因式分解教案
乘法公式与因式分解的运用 知识回顾
平方差公式 :(ab)(ab)a2b2
(ab)2a22abb2完全平方公式 :
其他常用公式 :(ab)a2abb22
a3b3(ab)(a2abb2)a3b3(ab)(a2abb2)
(abc)2a2b2c22ab2ac2bc
第五篇:因式分解教案
《用完全平方公式分解因式》教案设计
【教学目标】:
1.弄清完全平方公式的特点,能较熟练地应用公式因式分解。
2.经历探究用完全平方公式分解因式的过程,进一步理解完全平方公式的特点,体会整式乘法与因式分解之间的联系。
3.通过思考探究并归纳出因式分解的又一方法:逆用完全平方公式,得到a2±2ab+b2=(a±b)2 4.在探究完全平方公式的特点和运用完全平方公式分解因式的活动中,敢于发表自己的观点,获得成功的体验,培养耐心和自信心。
【教学重点】:弄清完全平方公式的特点,运用完全平方公式分解因式。【教学难点】:完全平方公式因式分解方法的灵活运用 【教学方法】:
启发式教学与探究式教学相结合 【教学过程】: 活动一:复习引入
1.运用公式计算下列各式:
(1)(x+3)(2)(2x-1)(3)(x+2y)
2.填空:
(1)x+6x+9=()()(2)4x4x+1=()()(3)x+4xy+4y=()()(4)x+2x+1=()()(设计意图:通过设计计算题,使学生运用公式计算,起到复习铺垫的作用;填空题的设计目的是使学生通过计算后发现乘法公式与因式分解的联系。)
活动二:探究新知(引导学生观察这两个多项式的特征,学生经过观察、思考,弄清这两个多项式的特点)1.你能将多项式a+2ab+b与a-2ab+b分解因式吗?这两个多项式有什么特点?
(设计意图:让学生经历观察、归纳、概括的过程,理解完全平方公式的特点,理解运用完全平方公式进行分解因式的方法,发展学生的逆向思维。)
2.下列多项式是不是完全平方式?为什么?(学生独立思考,小组交流,教师通过提问了解学生理解完全平方式的情况。)
(1)x+4x+4(2)x-10x+25(3)4x-4x+1(4)x+xy+y22 2
222
22_2
(4)(x+1)
(5)-x+x(6)0.25x+x+1
22(设计意图:通过讨论交流,熟悉公式结构的特征。)
活动三:例题解析 例1:分解因式:(1)16x+24x+9(2)-x+4xy-4y
(设计意图:掌握运用乘法公式进行分解因式的方法。)
例2:分解因式:(先让学生进行分解因式,然后归纳出分解因式的一般步骤和方法:①有公因式的先提公因式,再运用公式进行分解;②多项式可以看成一个整体。)(1)3ax+6axy+3ay(2)(a+b)-12(a+b)+36
(设计意图:掌握分解因式的方法步骤。)
例3:已知4y+my+9是完全平方式,则m=________。(设计意图:进一步掌握完全平方公式的特点。)活动四:巩固提升
分解因式:(学生独立完成,师巡视发现问题及时纠正。)(1)x+4x+4(2)x2x+1(3)x+4xy+4y
(4)5x+10xy+5y(5)(a-b)-12(a-b)+36(6)x-9
(设计意图:巩固,形成能力。)活动五:课堂小结
1.本节课你学到了什么知识? 2.因式分解的步骤和方法是什么? 检测反馈
利用完全平方公式对下列多项式因式分解:
(1)a2-10a+25;(2)4a2+12ab+9b2;
(3)-x2+4xy-4y2
(4)3ax2+6axy+3ay2
(5)(2x+y)2-6(2x+y)+9 22
2_
2222