有理数及其运算复习课教案

时间:2019-05-12 17:01:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《有理数及其运算复习课教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《有理数及其运算复习课教案》。

第一篇:有理数及其运算复习课教案

有理数及其运算复习课教案

本资料为woRD文档,请点击下载地址下载全文下载地址

总课时:1课时

第1课时,备课时间:第十五周 上课时间:第十六周一、复习目标:

(一、)知识目标:1:理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。

2:掌握四条法则:有理数的加、减、乘、除法则。

(二、)能力目标:1:会运用三条运算律进行有理数的简便运算。

2:初步领会有理数的两种方法(有理数大小的比较方法,平方表、立方表的查法)的作用。

3:进一步体验有理数的一个规定(有理数的混合运算的顺序规定)。

(三、)德育目标:1:使学生养成“言必有据、做必有理、答必正确”的良好思维习惯。

2:增进学生的“应用数学知识解决实际问题的数学思想。

二、重、难点:重点是有理数的混合运算,并能熟练地运用它解决简单的应用题。

难点是绝对值的应用。

三、教学过程

概念的系统化

负数的概念:初一学生由于受小学算术数的影响,容易遗漏负数,因此,准备以下判断题:

若一个数的绝对值等于5,则这个数是5。

若一个数的倒数等于它的本身,则这个数是1。

若一个数的平方等于4,则这个数是2。

若一个的立方等于它的本身,则这个数是0 或1。

数“0”的性质:因为0既不是正数,也不是负数,是正数和负数的分界线。给出下面的问题:

相反数是它本身的数是__。

绝对值是它本身的数是__。

正整数次幂是它本身的数是__。

不为0 的任何有理数的0次幂是__。

0与任何有理数相乘都得__。

运算律的应用:正确运用运算律可以使有理数计算简便。

把正、负数结合在一起;

把互为相反数结合在一起;

把同分母分数结合在一起;

把能凑整、凑0 的两个数结合在一起。

最容易出错的两个重要性质:绝对值和平方,可以提出以下例题:

有理数的绝对值总是什么数?

有理数的平方总是什么数?

若(a-1)2+(b+2)2=0,则a=__,b=__。

若|a-b|+|b-3|=0,则______。

|3-π|+|4–π|的计算结果是__________。

(6)已知:|x|=3,|y|=2,且xy<0,则x+y=__________。

实数在数轴上的对应点如图,a

0

b

化简a+|a+b|-|b–a|=___________。

(8)如果|x–3|=0,那么x=___________。

四、典型示例,科学归纳.例

1、指出下列各数的相反数、倒数、绝对值,并指出哪两个数互为相反数、互为倒数、绝对值相等;把各数分别表示在数轴上,并填在相应的集合里。

五、布置作业:试卷

第二篇:第一章 有理数复习课教案

第1章 有理数复习教案

一.学习目标

1.能正确掌握数的分类,理解有理数、数轴、相反数、绝对值、倒数五个重要概念。2.掌握有理数的加、减、乘、除、乘方的运算法则,能进行有理数的加、减、乘、除、乘方的运算和简单的混合运算;

3.养成“言必有据、做必有理、答必正确”的良好思维习惯。增进“应用数学知识解决实际问题的数学思想。

二.知识重点:

绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。

三.知识难点:

绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。四.考点:

绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。五.教学过程 一.知识梳理:

(一)、有理数的基础知识

1、三个重要的定义:

(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。

2、有理数的分类:

(1)按定义分类:(2)按性质符号分类:

正整数正整数正有理数整数0正分数负整数有理数有理数 0负整数正分数分数负有理数负分数负分数

3、数轴

数轴有三要素:原点、正方向、单位长度。画一条水平直线,在直线上取一点表示0

任何数与0相乘都得0。

(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac。

(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。

4、有理数的除法

有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0。

5、有理数的乘法

(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“a”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂。

(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数

6、有理数的混合运算

(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序。比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算。

(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力。

二、典型例题

例题1:将下列数分别填入相应的集合中:

n

正数集合:{ } 整数集合:{ } 分数集合:{ } 负数集合:{ }

三.课堂练习

1.计算2(24)所得的结果是()4A、0 B、32 C、32 D、16 2.有理数中倒数等于它本身的数一定是()A、1 B、0 C、-1 D、±1 3.若x1y2,则xy=()A、– 1 B、1 C、0 D、3 4.有理数a,b如图所示位置,则正确的是()

A、a+b>0 B、ab>0 C、b-a<0 D、|a|>|b| 5.(– 5)+(– 6)=___;(– 5)–(– 6)=___;(– 5)×(– 6)=___;(– 5)÷6=___。

1114124____;32____ _。6.2____;2=____;3 2792227.12002(1)2003_________;.计算(1)(2)(4)()(1)(2)2

四.课堂小结 五.课堂作业

把下列各数填在相应的大括号内:-3,+24123342()2 9332212,0.275,2,0,-1.04,-8,-100,-,32+3 473 负整数集合:{ „};正分数集合:{ „};负分数集合:{ „}

8、(157-+)×(-36)2912-5

第三篇:有理数的乘除法运算复习教案

有理数的乘除法

一、选择

1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积()A.一定为正 B.一定为负 C.为零 D.可能为正,也可能为负

2.若干个不等于0的有理数相乘,积的符号()A.由因数的个数决定 B.由正因数的个数决定

C.由负因数的个数决定 D.由负因数和正因数个数的差为决定 3.下列运算结果为负值的是()A.(-7)×(-6)

B.(-6)+(-4);

C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是()A.(-2)×(-3)=6 B.1(6)3 2 C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)×(-4)=-24 5.若两个有理数的和与它们的积都是正数,则这两个数()A.都是正数 B.是符号相同的非零数 C.都是负数 D.都是非负数

6.下列说法正确的是()A.负数没有倒数 B.正数的倒数比自身小 C.任何有理数都有倒数 D.-1的倒数是-1 7.关于0,下列说法不正确的是()A.0有相反数 B.0有绝对值

C.0有倒数 D.0是绝对值和相反数都相等的数 8.下列运算结果不一定为负数的是()A.异号两数相乘 B.异号两数相除

C.异号两数相加 D.奇数个负因数的乘积 9.下列运算有错误的是()A.÷(-3)=3×(-3)B.131(5)5(2)

2 C.8-(-2)=8+2 D.2-7=(+2)+(-7)10.下列运算正确的是()A.33411;B.0-2=-2;C.41;D.(-2)÷(-4)=2 4322

二、填空

1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果41a0,b0,那么ab_____0.6.如果5a>0,0.3b<0,0.7c<0,那么bac____0.7.-0.125的相反数的倒数是________.8.若a>0,则aaa=_____;若a<0,则

a=____.三、解答 1.计算:(1)348;(2)

213(6);(3)(-7.6)×132213.2.计算.(1)8334(4)2;(2)84(4)(2);(3)834(4)(2).3.计算(1)112113111114151617;(2)112111111213131414.4.计算

(1)(+48)÷(+6);

(2)

213352;

(4)0÷(-1000).5.计算.(1)(-1155)÷[(-11)×(+3)×(-5)];(2)375÷2332;(3)13123(5)63(5).6.计算(1)111832;

(2)

81111339.0.5;(4)

(3)4÷(-2);答案

一、ACBBA,DCCAB

二、1.相同;2互异;3负;4正的;5.>;6.>;7.8;8.1,-1

三、1.(1)-6;(2)14;(3)-3.8;(4)8 2.(1)22;(2)2;(3)-48; 3.(1)1;(2)

4.(1)8;(2);(3)-2;(4)0 5.(1)-7;(2)375;(3)4 6.(1)14;(2)-240 23235816

第四篇:有理数混合运算复习课的教学设计

有理数混合运算复习课的教学设计

长桥中学

薛丽凤

初中阶段的数学运算包括数的计算、式的恒等变形、方程和不等式的同解变形等。运算能力强,就能对运算活动进行顺利的调节,即迅速确定运算程序,选择最优运算方法,且在每一步都能熟练地进行运算。所以,在课堂中,培养学生运算既正确又迅速。这里的正确,指的是运算、推理、所得的结果都是正确无误;这里的迅速,指的是运算熟练、方法简单快速、步骤合理。

有理数的运算是初中数学中非常重要的一部分内容,它是以预初上半学期分数、小数的四则混合运算为基础的,但是它与分数、小数的四则混合运算又有很大的不同,分数、小数的四则混合运算不需要考虑结果的符号,运算单一,而引入了负数把数扩展到有理数范围以后所进行的有理数的运算,既要确定计算结果的符号,又要计算和、差、积、商及幂的绝对值。从知识的前后联系来看,“有理数”也是进一步学习代数式、方程等知识的基础。

在设计有理数的运算的复习课上,应能有效的让学生提高运算能力,使学过的知识不断地、形象地在学生头脑中再现,促进记忆效果,增加理解深度。

一、设计复习板书

一般复习课教学设计都是通过板书罗列条款,但在有理数运算复习课上这种方式不形象,容易使学生疲劳,也不容易直观地发现知识内容间的关系。

比如:有理数的运算复习课传统教学流程: 梳理知识点:

1、有理数的加法法则:同号两数相加,取原来的符号,并把绝对值相加。异号两数相加,绝对值相等时和为零;绝对值不相等时,其和的符号取绝对值较大的加数的符号,其和的绝对值为较大的绝对值减去较小的绝对值所得的差。一个数与零相加,仍得这个数。

有理数加法的运算律:交换律、结合律

2、有理数的减法法则:减去一个数等于加上这个数的相反数。

3、有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和零相 乘都得零。

有理数乘法的运算律:交换律、结合律、分配律

4、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。

5、有理数的乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

„ „ 这是典型板书形式,用这种大纲形式展示“教学内容”的弊端在于不利于学生学习观察,他们往往能够照猫画虎的完成运算,但是不能真正的理解运算的算理。运算法则是进行运算的基础,如果没有记住或记得不准确,概念模糊,法则含混,则必定影响运算的正确性。因此为了能够掌握这种运算,唯一的方法就是大量的反复的机械的练习,势必造成负担过重。

然而用网络结构图对知识进行梳理,这是老师对知识理解过程的可视化,学生既能直观地看到概念,又能了解到老师对有理数运算复习的思维过程。

举例212.9(13.7);139271(4);(7.25)7154同号异号122.913.7;139逆运算有理数的加法有理数的减法乘法运算律加法运算律有理数的运算有理数的乘法逆运算负因数:偶数个10.719154(1.5)131215有理数的除法负因数:奇数个10577乘方区分5(2)(5)(30)6

二、记忆运算法则

an和(a)n 为使学生牢固掌握概念、法则,向学生讲明其重要性,并讲究记忆的方法,学习数学也是离不开记忆的,没有一定的记忆能力,就不可能有知识的积累和应用。但是,切记死记硬背,要在理解和运用中记忆,也可采用“口诀”等有效方法帮助记忆。

有理数的运算法则比较易混淆,难理解,因此用四字口诀来记忆,就不容易记错。有理数加法法则可概括为:同号相加,符号不变,绝对值相加。异号相加,符号跟大,绝对值相减。

有理数乘法法则可概括为:两数相乘,同号得正,异号得负,绝对值相乘。

几个有理数相乘或计算有理数乘方时也要先判断积或幂的符号,可概括为:负奇得负,负偶得正;正奇得正,正偶亦正。可理解为:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数。

三、罗列典型错误

在平时进行有理数运算教学时,及时回收教学效果的反馈信息,一旦发现典型错误,就记录在案,复习课时通过正反两方面的练习进行纠正。

在有理数运算的复习课上,总结了以下的典型错误:

1、概念不清:学生对乘方的来龙去脉没有弄清楚,在复习课上可与学生一道总结记忆概念,并通过一系列该类型习题的练习,使这些知识在学生头脑中建立起清晰的印象。比如:236、(1)55

2、运算符号的错误:学生对a和a比较混淆。比如:1和(1)4

nn43、错用运算律:在有理数混合运算中,一些习题可用加法运算律和乘法运算律,来提高运算的迅速性和简捷性。比如:

4、对负分数理解不清:比如:2211521521

426346324425225 1515

5、违背运算顺序:比如:2224

6、违背去括号法则:比如:93(x1)93x3

四、加强运算练习

我们知道,任何能力都是在一定的实践活动中形成和发展起来的。为了有效地提高学生的运算能力,就必须有目的、有计划地加强运算练习。为此,在有理数运算复习阶段应注意以下几点:

(1)精选作业。作业的选择应考虑练习的目的和学生的实际。可根据学生在运算中容易发生的错误,适当的编选一些题目作为练习题。

(2)适当增多练习。应该说,在学习数学过程中多做练习是重要的。但学生的课余时间有限,应重点研究如何用较少的时间,来增加练习的机会和类型。

练习的题型可以是多种多样的,特别是一些算法多样化的题目,鼓励学生用自己的方法 解题其本质是鼓励学生独立思考,拓展学生探索、思考的空间,让学生自己找出解决问题的方法,对学生选择的方法不急于评判优劣,通过互相交流、老师介绍及自己体验,让学生能够自主选择适合自己的方法,因为每个学生都有自己独特的认知基础和思维方式。(3)严格要求。在练习时,一定要注意运算顺序,同级运算时一定要按照从左到右的顺序,在去括号时一定要按照从内到外的顺序,计算时不能乱跳步骤,并且注意书写格式。

关于有理数运算能力的提高,除了平时多精练外,上好复习课也相当重要。因此,应不断总结培养运算能力的经验,提高培养运算能力的科学性,从而更有效地培养运算能力。

2007.3.

第五篇:有理数混合运算教案doc

2-11.有理数的混合运算

授课教师:黄屿

一、教学目标:

1、知识与技能目标

掌握有理数混合运算法则,能熟练进行四步以内有理数的混合运算,并能合理使用运算律进行简便运算。

2、过程与方法目标

经历实验、操作、探索、等数学活动过程,发展合作交流的意识,提高有条理地、清晰地阐述自己观念的能力;

3、情感与态度目标

在解决问题的游戏活动中,体验数学学习的兴趣,在解决疑难问题的过程中,体会克服困难获得的欢欣。

二、教学重点:

掌握有理数混合运算法则,能熟练进行四步以内有理数的混合运算,并能合理使用运算律进行简便运算。

三、教学难点:

熟练进行四步以内有理数的混合运算。

四、教学方法: 尝试教学法

五、教具: 扑克牌

六、教学过程: 第一环节:复习回顾,引入新课 教师出示问题:

(1)请同学们回顾学过的加、减、乘、除四则运算的法则如何叙述?(2)请同学们观察下列各题,各包含了哪几种运算?

(1)18-(-12)÷(-2)2×(-1/3);(2)-42 ×[-3/4+(-5/8)]。

学生思考,并举手发言,教师鼓励学生的说法,并导入新课:今天我们将学习有理数的加、减、乘、除以及乘方的混合运算

(通过活动(1)复习回顾小学四则运算法则“先算乘法,再算加法,如果有括号,先算括号里面的.”为有理数四则运算的法则的学习铺设台阶;通过活动(2)引入本节课的学习课题:有理数的混和运算,并为下一环节的进行提出问题。)

第二环节:例题练习,掌握新知 教师提问:这种运算应该怎么进行? 学生活动:

(1)观察、类比、概括有理数混和运算的法则,先算乘方,再算乘除,最后算加减;如果有括号,先算括号里的。

例1 计算:

1252.52

562例2 计算:

(-3)2×[-2/3+(-5/9)]

(2)由学生独立完成第一环节活动(3)以及课本P48的随堂练习,请四名学生上台板演,教师巡视指导,关注待进生的点滴进步,及时鼓励他们,并及时讲评学生的板演,对格式、计算过程等进行评价。

(1)18-(-12)×(-2)2×(-1/3);

(2)-42 ×[-3/4+(-5/8)];

(3)8+(-3)2×(-2);

(4)100÷(-2)2-(-2)÷(-2/3).(活动(1)是为了培养学生的观察能力,类比能力,概括能力,语言表达能力;其中例1的教学是为了巩固有理数的运算法则,并让学生了解小数和带分数再乘除运算中一般化为分数或假分数进行乘除更容易约分;例2的教学是为了对比两种运算方法的不同之处,体会运算律可以简化运算。突出本节课的重点和难点;活动(2)一方面是为了熟练有理数混和运算的法则,并培养说明意识和表达能力;突出本节课的重点,突破本节课的难点;另一方面是为了让学生自己去验证自己概括的有理数混和运算的法则的正确性,并体验成功的欢欣。)

第三环节:游戏活动,巩固提高 教师介绍“24点”游戏规则:

从一副扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或-24.其中红色扑克牌代表负数,黑色扑克牌代表正数,J、Q、K分别代表11、12、13。

同时教师举例:若抽到的四张扑克牌分别是方块

2、红桃

2、黑桃 A和黑桃3,我们该怎样运算使结果是24或-24呢?

师生共同交流,解决问题,可以列式为[(-2)-1]×(-2)3=24 学生竞赛活动:

让学生六人一组从准备好的扑克牌中任意抽出四张牌,并用适当的运算符号连接,使得运算结果为24或者-24,在规定时间内,完成的小组把本组的计算过程一起写在黑板上,教师引导学生检查计算过程是否正确,并当场奖励正确完成的小组。没有完成的小组 在课后以后继续完成。(竞赛活动是为了培养学生的探究能力,合作能力,交流能力,以及对运算法则、运算律的应用能力,再次突出重点,突破难点;同时也是为了培养学生的逆向思维能力。因为游戏中“已知结果写算式”的过程正好与过去“已知算式求结果”的过程相反;同时展开竞赛可进一步激发学生的活动兴趣,培养集体荣誉感,对没有完成的小组进行鼓励,让学生带着问题走出课堂。同时对学生进行环保教育和养成教育。)

第四环节:课堂小结

由学生自己总结本节课的内容,培养学生的语言表达能力,活跃课堂气氛,表现学生独立、自主、自信的个性.展示学生的聪明智慧。

第五环节:布置作业

教科书第90页习题2.15知识技能1,问题解决1。复习巩固有理数混和运算的知识,训练运算技能和提高解决问题的能力。

四、教学反思

下载有理数及其运算复习课教案word格式文档
下载有理数及其运算复习课教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数混合运算教案

    一、教学目标是: 1、 知识与技能目标 掌握有理数混合运算法则,能熟练进行四步以内有理数的混合运算,并能合理使用运算律进行简便运算。 2、 过程与方法目标 经历实验、操作、探......

    《有理数》复习课说课稿

    《有理数》复习课说课稿 在座的各位评委:大家好 今天,我说课的题目是《有理数》复习课,这节课所选用的教材为北师大版义务教育课程标准七年级上册教科书。 一、教材分析 1、教......

    整式的运算复习课教案

    复习) 整 式 的 运 算(复习) 本章知识结构: 本章知识结构: 一、整式的有关概念 1、单项式 、 3、多项式 、 2、单项式的系数及次数 、 4、多项式的项、次数 、多项式的项、 5、整......

    有理数加减混合运算教案

    一:教学目标 让学生了解代数和的定义以机会进行加减混合运算。 二:教学重点 将加减混合运算理解为加法的运算。 三:教学难点 把省略加号与括号的形式按照有理数的加法进行......

    有理数的混合运算教案

    学科:数学 教学内容:有理数的混合运算 【学习目标】 1.掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算. 2.在运算过程中能合理使用运算律来简化运......

    人教版七年级上册数学有理数的运算复习教案

    有理数的运算 罗央央 【教学内容】 有理数的运算 【教学目标】 1.知识与技能:通过复习,帮助学生梳理有理数运算的知识要点及知识间的联系。 2.过程与方法:培养学生归纳、整理知......

    有理数复习课教学反思

    有理数复习课教学反思 我一直认为复习课不好上,因为复习课既要帮学生梳理整章知识脉络,又要进行相关知识点的针对性练习,往往一节复习课上完,老师说得累学生听着枯燥,实效虽有,但......

    六年级复习课数的运算教案大全

    课题:数的运算 课型:复习课 教学目标: 1. 理解和掌握整数、小数、分数四则混合运算的顺序,并能正确进行计算。 2. 理解和掌握各种运算定律,并能正确判断使用运算定律是否简便。 3......