第一篇:中考数学 一元一次方程的应用-相遇问题复习教案 新人教版
一元一次方程的应用
教学过程
一、复习
1、列方程解应用题的一般步骤是什么?
2、路程、速度、时间的关系是什么?
3、慢车每小时行驶48千米,x小时行驶
千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了
千米。
二、新授
1、引入
列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。
例(课本P216例3)题目见教材。
分析:(1)可以画出图形,明显有这样的相等关系: 慢车行程+快车行程=两站路程
设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450(2)再分析快车先开了30分两车相向而行的情形。同样画出图形,并按课本讲解,(见教材P217~218)由学生完成求解过程,并作出答案。解:略
说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。
(2)不是同时出发的,要注意时间的关系。
三、练习P220练习:1,2。
四、小结
1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。
2、相向而行的相遇问题中,要注意时间的关系。
五、作业
1、P222 4.4A:13,14,15。
2、基础训练:同步练习3。
第二篇:中考数学 一元一次方程和应用复习教案 新人教版
一元一次方程的应用
教学分析
重点:寻找和、差、倍、分问题的量与量之间的相等关系,列出一元一次方程。难点:寻找和、差、倍、分问题的相等关系。突破:从已知量和未知量之间的关系中找到相等关系。教学过程
一、复习
1、什么是等式?什么叫方程?一元一次方程的标准形式是什么?
2、什么是代数式?
3、列代数式:
(1)x的0.15,(2)比x多0.15,(3)比x的2倍小1。
二、新授
1、导课
在这一单元,我们将进一步学习设未知数列出方程来解应用题,我们将逐渐体会到,用代数方法解应用题,要比算术方法在列式上容易得多,而且可以解出用算术方法不易解出的或无法解出的实际问题。例1(课本P212)
某面粉仓库存放的面粉运出15%后,还剩下42500千克,这个仓库原来有多少面粉? 分析:已知运出面粉为原来面粉的15%,剩余面粉42500千克,未知原来有面粉重量与运出面粉重量。相等关系是:
原来有面粉重量运出面粉重量=剩余面粉重量
设原来有面粉x千克,则运出面粉重量为15%x千克,这样左右两边都列出了代数式,放入相等关系中,即可得出方程:
x-15%x=42500 完成求解过程,作出答案,强调4个注意点。解:略
三、练习P216习题:1,2。
四、小结
1、列方程解应用题应分析题中的数量关系,找出一个相等关系。
2、列方程解应用题比算术方法在列式上容易得多。
五、作业
1、P221 4.4A:1,2,3,4,5。
2、基础训练:同步练习1。
第三篇:中考数学 一元一次方程的应用-体积问题复习教案 新人教版
一元一次方程的应用
教学过程
一、复习
1、列方程解应用题就是从应用题中找出
关系,并把
关系表示成 ;
2、底面半径为30mm,6高为60mm的圆柱体积为
,底面直径为40mm,高为xmm的圆柱体积为。
二、新授
1、导课
列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。
例(课本P212例2)
分析:讲解图中每个数据的含义,指出○加一“/”是直径的记号。在图上以mm为单位时,就不标单位。
图中哪句话能表达这个应用题的相等关系,这个相等关系是什么?“圆柱(2)的体 积是圆柱(1)的体积的3倍”这句话中表达了这样的相等关系:3×圆柱(1)的体积=圆柱(2)的体积,或3V1=V2。
设圆柱(1)的高为xmm,现分析等式的左边和右边。这样左右两边都列出了代数式,放入相等关系中,即可得出方程:
由学生完成求解过程,并作出答案。解:略
三、练习P216习题:3,4。
四、小结
1、列方程解应用题的一般步骤。
2、体会列方程解应用题的优越性。
五、作业
1、P222 4.4A:9,10,11,12。
2、基础训练:同步练习2。
第四篇:相遇问题数学教后反思
相遇问题数学教后反思
在当今社会生活中,教学是重要的工作之一,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。那么大家知道正规的反思怎么写吗?以下是小编整理的相遇问题数学教后反思,欢迎阅读,希望大家能够喜欢。
《数学新课程标准》明确指出,数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习,合作交流的情境,从而激发他们对数学的兴趣,以及学好数学的强烈愿望。要让枯燥的数学课堂焕发生机,具有魅力,必须为学生创设积极思维的情境。这样能使教学过程对学生的注意始终有一种吸引力。当然,老师创设的情境应该贴近学生的生活,符合学生的年龄特征,让它成为一种愉悦的情绪体验和积极的情感体验。我在教学《相遇问题》一课时,就创设了生活情境,让学生自始至终处于一种情境之中,很自然的在解决生活中实际问题的过程中学习新知,使枯燥的数学课堂焕发了生机。
一、在导入时创设生活情境,让课堂贴近学生。
生活是具体的.,数学是抽象的。我们应该把数学抽象的内容附着在现实的情境中,让学生去学习从现实生活中产生、发展的数学。在教学中我设计了某同学不小心把同桌的作业带回家这种事,司空见惯。要求学生思考用不同的方法把作业本送回同学的身边。创设了这样的生活情境,激活了学生的生活经验,学生很快想出了解决问题的办法。还编出了学生已熟悉的简单行程问题,既起到了复习的目的,又为后面的学习作好了铺垫,从而更加吸引学生的注意力。知道一人的速度和时间能求路程,知道路程和速度也能求时间,那么,知道两人的速度和走这段路程所用的时间能求路程吗?怎么求?引发了认知冲突,激发了学生的求知欲望。
二、在探究时创设生活情境,让学生走进生活。
在教学过程中创设生活情境,拉近了数学学习和生活的距离,学生在这一情境之中,结合教师的演示和画线段图,主动地利用已有的知识去探索,去发现,理解并学会了新知识。并在学习过程中,学会了与同学合作,独立思考,积极主动地解决问题的方法。
三、在练习中创设生活情境,用所学的知识解决生活中的实际问题。
在情境之中教与学,不只是学生学得投入,学得高兴,老师也感觉教得轻松。要想让课上得轻松,让数学教学具有魅力,吸引学生积极主动地参与到学习过程中来,我们很有必要创设情境教学的课堂。
通过这节课,我体会到学生学习需要经历亲身的体验,才能获得切实的感受,感受越深,理解数学知识越深刻。
第五篇:数学相遇问题教案
数学相遇问题教案
教学目标
1.理解相遇问题的基本特点,并能解答简单的相遇求路程的应用题.
2.培养学生初步的逻辑思维能力和解决简单实际问题的能力.
3.渗透运动和时间变化的辩证关系.
教学重点
掌握求路程的相遇问题的解题方法.
教学难点
理解相遇问题中时间和路程的特点.
教学过程
一、以旧引新
(一)口答列式,并说明理由.
1.一辆汽车每小时行60千米,4小时行多少千米?
2.一辆汽车4小时行了240千米,每小时行多少千米?
3.一辆汽车每小时行60千米,行驶240千米需要几小时?
教师板书:速度×时间=路程
(二)创设情境
1.录音(或录相)“有一天,张华放学回家,打开书包正准备做作业.发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”
2.小组集体讨论
(1)张华送到李诚家;
(2)李诚来张华家取走;
(3)两人同时从家出发,向对方走去,在途中相遇,交给李诚.
3.认识相遇问题
(1)找两名学生表演第三种情况,其余学生观察并说出是怎么走的?
(同时,从两地,相对而行)
(2)两个人之间的距离有什么变化?(越来越近,最后变为零)
教师指出:当两个人的距离为零时,称为“相遇”
具有“两物、同时从两地相对而行”这种特点的行程问题,叫做“相遇问题”
板书课题:相遇问题
(三)出示准备题:
张华距李诚家390米,两人同时从家里出发,向对方走去.张华每分走60米,李诚每分走70米. 根据已知条件填写下表 走的时间
张华走的路程60米
李诚走的路程70米
两人所走路程的和
现在两人的距离
1分
60米
70米
2分···
3分
···
思考:
1.出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)
2.两个人所走路程的和与两家的距离有什么关系?(两人所走路程和=两家距离)
二、教学新课
(一)教学例3
小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米?
1.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记.
请同学解释这两个词的含义.
2.动画演示两人行进的过程,并在图中显示出已知数据.(演示课件:相遇问题)
3.由学生尝试解答例3
4.结合线段图订正答案.
方法一:65×4+70×4
方法二:(65+70)×4
=260+280
=135×4
=540(米)
=540(米)
速度和×相遇时间=路程
5.比较
(1)两种算法哪一种比较简便?
(2)两种算法之间有什么联系?
三、巩固练
(一)志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分钟两人相遇,两地相距多少米?
(二)两列火车从两个车站同时相向开出.甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇.两个车站之间的铁路长多少千米? 讨论:行程问题在出发地点、出发时间、动动方向、运动结果上有什么共同特点?
板书:出发地点:两地
出发时间:同时
运动方向:相向(相对、对面)
运动结果:相遇
(三)两只轮船同时从上海和武汉相对开出.从武汉出发的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?
(四)两辆汽车同时从一个地方向相反方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.经过3小时,两车相距多少千米?
1.由学生用手势表述题意.
2.比较:与前面题目相比,有什么不同?又有什么共同之处?
(五)甲、乙两列火车从两地相对行驶.甲车每小时行75千米,乙车每小时行69千米.
甲车开出后1小时,乙车才开出,再经过2小时相遇.两地间的铁路长多少千米?
1.由学生用手势语言向同组同学介绍题意.
2.由学生独立解答
3.出示四种不同解法,请同学小组讨论并做出判断.
方法一:75×1+75×2+69×
2方法二:75×(1+2)+69×2
方法三:75×1+(75+69)×2
方法四:(75+69)×(2+1)
四、课堂小结
通过上面两个例题我们可以看出,行程问题也还有许多变化,请你猜一猜,行程问题还可能有哪些变化?
(相背、同向、不同时、不相遇、相遇后返回第二次相遇,三个物体运动„„)
今天我们学习的是行程问题中最基本的一种,求路程,它需要告诉我们哪些条件?
怎样求?如果要求“相遇时间”该告诉我们哪些条件?怎样求呢?请同学们在课下思考?
五、课后作业
(一)两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时相遇,上海到武汉的航路长多少千米?
(二)两辆汽车同时从一个地方向相反的方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.过3小时,两车相距多少千米?