第一篇:七年级数学3.4.2 实际问题与一元一次方程油菜种植的计算 教案人教版
亿库教育网
http://www.xiexiebang.com 3.4.2 油菜种植的计算(探究2)
教学内容
课本第105页内容.
教学目标 1.知识与技能
进一步掌握用方程解决实际问题的方法,提高分析问题和解决问题的能力. 2.过程与方法
经历“探究2”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学思想方法.
3.情感态度与价值观
发展学生勇于探究、积极地参与讨论,合作交流意识,在“建模”中感受数学的应用价值.
重、难点与关键
1.重点:理解和掌握基本的数学知识、技能、数学思想方法,•会用一元一次方程解决实际问题.
2.难点:列一元一次方程表示问题中的数量关系.
亿库教育网
http://www.xiexiebang.com
亿库教育网
http://www.xiexiebang.com 3.关键:明确问题中的数量关系,找出等量关系.
教具准备
投影仪.
教学过程
一、引入新课
上一节课,我们探究了“销售中的盈亏”问题,使我们进一步感受到一元一次方程作为实际问题的数学模型的作用.本节课我们再探究一个农业生产中的一个较复杂的问题.
二、共同探究
某村去年种植的油菜籽亩产量达160千克,含油率为40%,今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点.
(1)今年与去年相比,这个村的油菜种植面积减少了44亩,•而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜植种面积是多少亩?
(2)油菜种植成本为210元/亩,菜油收购价为6元/千克,请比较这个村去、•今两年油菜种植成本与将菜油全部售出所获收入.
教师提出问题后,组织学生分四人小组讨论、探究.
首先让学生明确“含油率”、“10个百分点”、“产油量”等词的亿库教育网
http://www.xiexiebang.com
亿库教育网
http://www.xiexiebang.com 含义,分析问题中的基本等量关系.在学生充分思考,交流后,小组派代表介绍小组的解题方法.
分析:问题中有基本等量关系.
产油量=油菜籽亩产量×含油率×种植面积
解:(1)设今年种植油菜x亩,则去年种植油菜(x+44)亩.
由上面基本等量关系,得,去年产油量=160×40%×(x+44);
今年产油量=(160+20)×(40%+10%)x;
根据今年比去年产油量提高20%,列方程:
(160+20)×(40%+10%)x=(1+20%)×160×40%×(x+44)90x=76.8(x+44)13.2x=3379.2 x=256 因此今年油菜种植面积是256亩.
(2)去年油菜种植成本为210(x+44)=210×300=63000(元)
售油收入为 6×160×40%×300=115200(元).
售油收入与油菜种植成本差为115200-63000=52200(元)
今年油菜种植成本为210x=210×256=53760(元)
售油收入为
亿库教育网
http://www.xiexiebang.com
亿库教育网
http://www.xiexiebang.com 6×180%×50%x=6×180×50%×256=138240(元)138240-53760=9240(元)
今年比去年售油收入增加了 138240-115200=23040(元)
今年比去年种植油菜纯收入增加了32280元.
三、巩固练习
课本第108页第5题.
由学生独立思考,求出解,若学生有困难,教师加以引导分析.
解:设每箱有x个产品,则8箱可装8x个产品,5台A型机器,一天生产8x+4个产品,•每台A型机器一天生产 同样,可知每台B型机器一天生产
11x178x45个产品.
个产品.
相等关系是每台A型机器比B型机器一天多生产1个产品.
由此可列方程:8x45-
11x17=1 去分母,得 7(8x+4)-5(11x+1)=35 去括号,得 56x+28-55x-5=35 移项,合并,得 x=12 答:每箱有12个产品.
四、课堂小结
本节课是利用一元一次方程来解决商品销售中所涉及的一些概
亿库教育网
http://www.xiexiebang.com
亿库教育网
http://www.xiexiebang.com 念公式来解决实际问题.
五、作业布置
1.课本第108页习题3.4第6、7题. 2.选用课时作业设计.
第二课时作业设计
解答题: 1.已知某年某月共有四个星期六,这四天的号数之和为50,你知道这四个星期六分别是几号吗?
2.据了解,个体服装店销售只要高出进价的20%便可盈利,•但老板们常以高出进价的50%~100%标价,假如你准备买一件标价为200元的服装,应在什么范围内还价?
3.小丁编制了一个计算程序,当输入任何一个有理数,显示屏的结果总等于所输入有理数的2倍与1的和.如果小丁先输入一个数,再将所显示的结果重新输入,•这时显示的结果为11,试求小丁原来输入的数是多少?像这样连续输入多少次后,•所得结果为95?
4.聪聪到希望书店帮同学们买书,售货员主动告诉他,如果用20元钱办“希望书店会员卡”,将享受八折优惠,请问在这次买书
亿库教育网
http://www.xiexiebang.com
亿库教育网
http://www.xiexiebang.com 中,聪聪在什么情况下,办会员卡与不办会员卡一样?当聪聪买标价为200元的书时,怎么做合算,能省多少钱?
答案: 1.2号,9号,16号,23号,设这个月的第一个星期六为x号,则x+(x+7)+(x+14)+(x+21)=50 2.还价范围可定在120元~160元.
设这件服装进价为x元,若老板以高出进价的50%标价,则(1+50%)x=200,x≈133,若老板以高出进价的100%标价,则(1+•100%)x=200,x=100,可见进价为100元~133元之间.
3.设小丁输入的数为x,则2(2x+1)+1=11,x=2;5次 4.设聪聪买标价共计x元的书时,办卡与不办卡一样,则20+0.8x=x,x=100,200+200×0.8=180(元),200-180=20(元),所以当买标价共计100元的书时,•办卡与不办卡一样,当买标价共计200元时,办卡合算,能省20元.
亿库教育网
http://www.xiexiebang.com
亿库教育网
http://www.xiexiebang.com
http://www.xiexiebang.com
第二篇:实际问题与一元一次方程油菜种植的计算_教案人教版
油菜种植的计算
教学内容
课本第105页内容.
教学目标
1.知识与技能
进一步掌握用方程解决实际问题的方法,提高分析问题和解决问题的能力. 2.过程与方法
经历“探究2”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学思想方法.
3.情感态度与价值观
发展学生勇于探究、积极地参与讨论,合作交流意识,在“建模”中感受数学的应用价值.
重、难点与关键
1.重点:理解和掌握基本的数学知识、技能、数学思想方法,•会用一元一次方程解决实际问题.
2.难点:列一元一次方程表示问题中的数量关系. 3.关键:明确问题中的数量关系,找出等量关系.
教具准备
投影仪.
教学过程
一、引入新课
上一节课,我们探究了“销售中的盈亏”问题,使我们进一步感受到一元一次方程作为实际问题的数学模型的作用.本节课我们再探究一个农业生产中的一个较复杂的问题.
二、共同探究
某村去年种植的油菜籽亩产量达160千克,含油率为40%,今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点.
(1)今年与去年相比,这个村的油菜种植面积减少了44亩,•而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜植种面积是多少亩?
(2)油菜种植成本为210元/亩,菜油收购价为6元/千克,请比较这个村去、•今两年油菜种植成本与将菜油全部售出所获收入.
教师提出问题后,组织学生分四人小组讨论、探究.
首先让学生明确“含油率”、“10个百分点”、“产油量”等词的含义,分析问题中的基本等量关系.在学生充分思考,交流后,小组派代表介绍小组的解题方法.
分析:问题中有基本等量关系.
产油量=油菜籽亩产量×含油率×种植面积
解:(1)设今年种植油菜x亩,则去年种植油菜(x+44)亩.由上面基本等量关系,得,去年产油量=160×40%×(x+44);
今年产油量=(160+20)×(40%+10%)x;
根据今年比去年产油量提高20%,列方程:
(160+20)×(40%+10%)x=(1+20%)×160×40%×(x+44)90x=76.8(x+44)13.2x=3379.2 x=256 因此今年油菜种植面积是256亩.
(2)去年油菜种植成本为210(x+44)=210×300=63000(元)
售油收入为 6×160×40%×300=115200(元).
售油收入与油菜种植成本差为115200-63000=52200(元)
今年油菜种植成本为210x=210×256=53760(元)
售油收入为
6×180%×50%x=6×180×50%×256=138240(元)138240-53760=9240(元)
今年比去年售油收入增加了 138240-115200=23040(元)
今年比去年种植油菜纯收入增加了32280元.
三、巩固练习
课本第108页第5题.
由学生独立思考,求出解,若学生有困难,教师加以引导分析.
解:设每箱有x个产品,则8箱可装8x个产品,5台A型机器,一天生产8x+4个产品,•每台A型机器一天生产8x45个产品.
11x17 同样,可知每台B型机器一天生产个产品.
相等关系是每台A型机器比B型机器一天多生产1个产品.
由此可列方程:8x45-11x17=1 去分母,得 7(8x+4)-5(11x+1)=35 去括号,得 56x+28-55x-5=35 移项,合并,得 x=12 答:每箱有12个产品.
四、课堂小结
本节课是利用一元一次方程来解决商品销售中所涉及的一些概念公式来解决实际问题.
五、作业布置
1.课本第108页习题3.4第6、7题.
2.选用课时作业设计.
第三篇:七年级《实际问题与一元一次方程》教案
七年级《实际问题与一元一次方程》教
案
一、教学目标
【知识与技能】能利用方程解决实际问题。
【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。
【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。
二、教学重难点
【重点】建立电话计费问题的方程模型。
【难点】建立电话计费问题的方程模型。
三、教学过程
导入新
前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。
2对问题的初步认识
问题1:下面表格给出的是两种移动电话的计费方式:
黑龙江教师招聘考试教学设计:《实际问题与一元一次方程》
你了解表格中这些数字的含义吗?
师生活动:教师提问,学生思考,回答。
教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。
问题2:你觉得哪种计费方式更省钱呢?
师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:
若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;
若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。
讨论后安排学生再次思考,可适当讨论。
3对问题的深入探究
问题3:通过大家的讨论,你对电话计费问题有什么新的认识?
师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:
若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;
若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。
问题4:设一个月内用移动电话主叫为tin。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。
第四篇:七年级数学《实际问题与一元一次方程》说课稿
七年级数学《实际问题与一元一次方程》说课稿
七年级数学《实际问题与一元一次方程》说课稿
尊敬的各位评委老师,大家好!
我今天说课的课题是“销售中的盈亏”,是人教版七年级数学第三章第四节《实际问题与一元一次方程》探究一的内容,这节课的重点就是利用一元一次方程解决商品销售中的实际问题。下面我分别从教材、教法、学法、教学过程四部分来说说我的备课设想。
一、教材分析
前面已经学过解一元一次方程和由实际问题列一元一次方程。本节课是在此基础上进一步学习如何用一元一次方程解决实际问题。由于涉及的知识较多,所以学生学习有一定的难度。通过本节课的学习,熟练掌握列一元一次方程解决实际问题的思维方法,为我们以后学习用二元一次方程组、分式方程以及一元二次方程解决实际问题打下良好的基础。针对本节课的重要性,结合初中数学现行课程标准和素质教育的要求,以及初一学生的认知规律和实际水平,确定教学目标。
(一)教学目标
知识与技能
1、理解商品销售中的进价、售价、利润、利润率的含义以及这些基本量之间关系。
2、能根据商品销售中的数量关系找出等量关系列出方程,掌握商品盈亏的求法。
3、能利用一元一次方程解决商品销售中的盈亏问题。
过程与方法
通过探究和讨论活动,培养学生建立方程模型将实际问题转化为数学问题的化归能力,培养学生分析问题、解决问题的能力。
情感态度与价值观
让学生在实际生活中感受到数学的重要价值,感受到数学就在我们身边,激发学生学习数学的兴趣。
(二)重点、难点
对于初一学生来说,阅读理解能力和有关商品销售知识有限,考虑问题的全面性、深刻性不够,而盈亏问题中的相等关系是解决销售问题列方程的重要依据,因此确定本节的重、难点如下:
重点:能利用一元一次方程解决商品销售中的实际问题。
难点:弄清商品销售中的“进价”、“售价”、“利润”、“利润率”的含义以及这些基本量之间的关系。
突破本节课重、难点的方法 :弄清问题背景,分析清楚相关数量关系,找出可以作为列方程依据的主要相等关系。
(三)、教具准备 多媒体课件
二、教学策略
根据这节课的特点,在教学策略上分为两步:
(一)问题——在生活中产生
根据初一学生活泼、好奇的性格特点,课程一开始就创设了情境,使数学问题生活化,与学生的现实生活联系起来,这样可使学生在数学活动的情境中借助已有的生活经验,去感受,去经历,从而促使学生发现问题、提出问题和解决问题。上一节课我提前给学生留了一个特殊的作业,让他们作一个市场调查,了解进价、售价、利润、利润率之间的关系,初步理解在销售中的盈亏问题,为本节课的学习奠定基础。
(二)问题——在探究中解决
考虑到本节课的特点,我准备充分发挥每个学生的主动性,让学生先认真分析各自的调查情况,再结合多媒体图片和老师出的问题,引导学生自主学习、合作学习和探究学习,以小组的形式讨论、归纳、总结出“进价”“售价”“利润”“利润率”之间的关系,进而利用关系探究新知,解决实际问题。
三、学情分析
1、学生社会知识有限,往往弄不清销售问题中的有关概念,理解不清概念之间的关系。
2、学生在列方程解应用题时,可能存在两个方面的困难:
(1)抓不准相等关系;
(2)习惯于用小学算术解法,不适应用方程解决应用题。
3、学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是。作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
4、学生在学习过程中可能不完全理解概念之间的关系,而习惯于套题型,找解题模式。
四、教学过程
根据初一学生的认知规律和新课标教学理念,在课堂教学中分为七步:
(一)创设情境,导入新课
出示多媒体图片,创设问题情境。
(二)提出问题,归纳公式
学生以小组合作,讨论得出下面概念的含义。
进价:购进商品时的价格(有时也叫成本价)
售价:在销售商品时的价格(有时叫卖出价)
打折:卖货时,按照标价乘以十分之几或百分之几十。
利润:在销售过程中的纯收入。即:利润 = 售价0.25y元,列出方程 y(1-0.25)= 60,解得 y =80。(亏损就是负盈利,即利润为-0.25y元)
两件衣服的进价是x + y = 48 + 80 = 128 元,而两件衣服的售价是60 + 60 = 120元,进价 大 于售价,可知卖这两件衣服总的盈亏情况是亏损8元。(将结论与先前的估算进行比较)
(设计意图:通过学习前面三个问题,学生掌握了一些销售知识,在此基础上,我针对例题又设计了这道填空题,使学生初步感受“数学建模”的方法,更好地培养学生有条理地进行思考和表达,从而突破本节课重点。)
(四)新知应用
1、巩固练习
新华书店出售A、B两种不同型号的学习机,每台售价为960元。A型一台盈利20%,B型一台亏损20%。该书店出售A、B型学习机各一台是盈利还是亏损,或是不盈不亏?
2、拓展延伸
商场将某款服装按标价打9折出售,仍可盈利10%,已知该款服装的标价是330元,那么该款服装的进价是多少元?
(设计意图: 为了及时检测学生掌握的情况,培养学生类比解决问题的能力,巩固所学方法,渗透数学建模思想,设计了两道练习题。)
(五)总结升华
让学生谈谈收获:
1、本节学了哪些知识?
2、商品销售中的盈亏是如何计算的?
3、用一元一次方程解决实际问题的关键是找出什么?
(设计意图:通过师生对话式交流,让学生真正意识到数学来源于生活,服务于生活,我们要努力学好数学,增强学生的求知欲。)
(六)布置作业 作业:课本习题3.4第3题、第4题
(七)板书设计
销售中的盈亏
1、基本概念:
2、公式
进价: 利润率= ×100% = ×100%
售价: 售价=进价×(1+利润率)
利润:
利润率:
(设计意图: 简洁美观的板书设计给学生以美感,同时可以使学生感到脉络清晰,对本节的重点有个整体认识。)
我的说课完毕,谢谢各位评委老师!
第五篇:3.4.2 油菜种植的计算(探究2)(修订版教案)-
3.4.2 油菜种植的计算(探究2)
教学内容
课本第105页内容.
教学目标
1.知识与技能
进一步掌握用方程解决实际问题的方法,提高分析问题和解决问题的能力. 2.过程与方法
经历“探究2”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学思想方法. 3.情感态度与价值观
发展学生勇于探究、积极地参与讨论,合作交流意识,在“建模”中感受数学的应用价值.
重、难点与关键
1.重点:理解和掌握基本的数学知识、技能、数学思想方法,•会用一元一次方程解决实际问题.
2.难点:列一元一次方程表示问题中的数量关系. 3.关键:明确问题中的数量关系,找出等量关系.
教具准备
投影仪.
教学过程
一、引入新课
上一节课,我们探究了“销售中的盈亏”问题,使我们进一步感受到一元一次方程作为实际问题的数学模型的作用.本节课我们再探究一个农业生产中的一个较复杂的问题.
二、共同探究
某村去年种植的油菜籽亩产量达160千克,含油率为40%,今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点.
(1)今年与去年相比,这个村的油菜种植面积减少了44亩,•而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜植种面积是多少亩?
(2)油菜种植成本为210元/亩,菜油收购价为6元/千克,请比较这个村去、•今两年油菜种植成本与将菜油全部售出所获收入.
教师提出问题后,组织学生分四人小组讨论、探究.
首先让学生明确“含油率”、“10个百分点”、“产油量”等词的含义,分析问题中的基本等量关系.在学生充分思考,交流后,小组派代表介绍小组的解题方法.
分析:问题中有基本等量关系.
产油量=油菜籽亩产量×含油率×种植面积
解:(1)设今年种植油菜x亩,则去年种植油菜(x+44)亩.
1.课本第108页习题3.4第6、7题.
2.选用课时作业设计.
第二课时作业设计
解答题: 1.已知某年某月共有四个星期六,这四天的号数之和为50,你知道这四个星期六分别是几号吗?
2.据了解,个体服装店销售只要高出进价的20%便可盈利,•但老板们常以高出进价的50%~100%标价,假如你准备买一件标价为200元的服装,应在什么范围内还价? 3.小丁编制了一个计算程序,当输入任何一个有理数,显示屏的结果总等于所输入有理数的2倍与1的和.如果小丁先输入一个数,再将所显示的结果重新输入,•这时显示的结果为11,试求小丁原来输入的数是多少?像这样连续输入多少次后,•所得结果为95?
4.聪聪到希望书店帮同学们买书,售货员主动告诉他,如果用20元钱办“希望书店会员卡”,将享受八折优惠,请问在这次买书中,聪聪在什么情况下,办会员卡与不办会员卡一样?当聪聪买标价为200元的书时,怎么做合算,能省多少钱?
答案: 1.2号,9号,16号,23号,设这个月的第一个星期六为x号,则x+(x+7)+(x+14)+(x+21)=50 2.还价范围可定在120元~160元.
设这件服装进价为x元,若老板以高出进价的50%标价,则(1+50%)x=200,x≈133,若老板以高出进价的100%标价,则(1+•100%)x=200,x=100,可见进价为100元~133元之间.
3.设小丁输入的数为x,则2(2x+1)+1=11,x=2;5次 4.设聪聪买标价共计x元的书时,办卡与不办卡一样,则20+0.8x=x,x=100,200+200×0.8=180(元),200-180=20(元),所以当买标价共计100元的书时,•办卡与不办卡一样,当买标价共计200元时,办卡合算,能省20元.