人教版七年级数学上册教案之实际问题与一元一次方程(5篇范例)

时间:2019-05-15 01:41:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版七年级数学上册教案之实际问题与一元一次方程》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版七年级数学上册教案之实际问题与一元一次方程》。

第一篇:人教版七年级数学上册教案之实际问题与一元一次方程

实际问题与一元一次方程

教学目标:

1、知识目标:

(1)建立实际问题的方程模型,运用一元一次方程分析和解决实际问题.

(2)根据问题的实际背景进行检验,利用方程进行简单推理判断.

能力目标:

在具体的情景中,通过探究、交流、反思等活动,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析和解决问题的能力.

3、情感态度与价值观:培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值.

教学重点、难点:

重点:建立实际问题的方程模型,运用一元一次方程分析和解决实际问题.

难点:正确地建立方程.

教学过程:

一、创设情景

男生都喜欢看NBA,激烈的对抗中比分交替上升,最终由积分显示牌上的各队积分进行排位.下面我们来看一个2000赛季国内篮球甲A联赛常规赛的最终积分榜„„

二、提出并解决问题:

想一想

用式子表示总积分与胜、负场数之间的数量关系;

如果一个队胜m场,则负(22—m)场,胜场积分为 2m,负场积分为22—m,总积分为

2m+(22—m)=m+22

议一议

某队的胜场总积分能等于它的负场总积分吗?

设一个队胜了x场,则负了(22—x)场,如果这个队的胜场总积分等于负场总积分,则有方程

2x=(22—x)

计算得

x=22/3

问题:x表示什么量?它可以是分数吗?

x表示某队获胜的场数,它应该是自然数,不能是分数22/3.所以x=22/3不符合实际.

问题:由此你得出什么结论?

可以判定没有哪个队的胜场总积分等于负场总积分.

问题:“观察积分表,你能选择出其中一行说明负一场积几分吗?”

设胜一场积x分的话,从表中其他任何一行可以列方程,求出x的值

从第一行得出方程:

18x+1×4=40

由此得出

x=2

用表中其他行可以验证,得出结论:负一场积1分,胜一场积2分.

教师应关注培养学生的数学建模思想.给学生一定的思考时间,让学生自己解、设、列,体会建模过程.

三、例题

①引导学生大体估算盈亏情况;

②教师提出问题,学生自主讨论解决;

(1)商品销售中的盈亏如何计算?

(2)两件衣服的进价、售价分别是多少?

③得出结论后,将结论与学生先前的估算进行比较;

④教师归纳解决问题的大致过程.解:设盈利是25%的衣服成本为x元,则它的商品利润是0.25x元,列出方程

x+0.25x = 60,解得x = 48

类似地,设亏损25%的衣服成本为y元,则它的商品利润是−0.25%y,列出方程

y−0.25y = 60,解得y = 80

两件衣服的进价为x+y = 48+80 = 128(元),而两件衣服的售价是60+60 = 120(元),进价高于售价,因此,卖这两件衣服总的是亏损.

四、小结:

通过以下问题引导学生小结:

①由学生谈谈本节课学到了哪些知识?学后有何感受?

②商品销售中的基本等量关系有哪些?

第二篇:七年级《实际问题与一元一次方程》教案

七年级《实际问题与一元一次方程》教

一、教学目标

【知识与技能】能利用方程解决实际问题。

【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。

【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。

二、教学重难点

【重点】建立电话计费问题的方程模型。

【难点】建立电话计费问题的方程模型。

三、教学过程

导入新

前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。

2对问题的初步认识

问题1:下面表格给出的是两种移动电话的计费方式:

黑龙江教师招聘考试教学设计:《实际问题与一元一次方程》

你了解表格中这些数字的含义吗?

师生活动:教师提问,学生思考,回答。

教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。

问题2:你觉得哪种计费方式更省钱呢?

师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:

若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;

若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。

讨论后安排学生再次思考,可适当讨论。

3对问题的深入探究

问题3:通过大家的讨论,你对电话计费问题有什么新的认识?

师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:

若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;

若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。

问题4:设一个月内用移动电话主叫为tin。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。

第三篇:七年级数学《实际问题与一元一次方程》说课稿

七年级数学《实际问题与一元一次方程》说课稿

七年级数学《实际问题与一元一次方程》说课稿

尊敬的各位评委老师,大家好!

我今天说课的课题是“销售中的盈亏”,是人教版七年级数学第三章第四节《实际问题与一元一次方程》探究一的内容,这节课的重点就是利用一元一次方程解决商品销售中的实际问题。下面我分别从教材、教法、学法、教学过程四部分来说说我的备课设想。

一、教材分析

前面已经学过解一元一次方程和由实际问题列一元一次方程。本节课是在此基础上进一步学习如何用一元一次方程解决实际问题。由于涉及的知识较多,所以学生学习有一定的难度。通过本节课的学习,熟练掌握列一元一次方程解决实际问题的思维方法,为我们以后学习用二元一次方程组、分式方程以及一元二次方程解决实际问题打下良好的基础。针对本节课的重要性,结合初中数学现行课程标准和素质教育的要求,以及初一学生的认知规律和实际水平,确定教学目标。

(一)教学目标

知识与技能

1、理解商品销售中的进价、售价、利润、利润率的含义以及这些基本量之间关系。

2、能根据商品销售中的数量关系找出等量关系列出方程,掌握商品盈亏的求法。

3、能利用一元一次方程解决商品销售中的盈亏问题。

过程与方法

通过探究和讨论活动,培养学生建立方程模型将实际问题转化为数学问题的化归能力,培养学生分析问题、解决问题的能力。

情感态度与价值观

让学生在实际生活中感受到数学的重要价值,感受到数学就在我们身边,激发学生学习数学的兴趣。

(二)重点、难点

对于初一学生来说,阅读理解能力和有关商品销售知识有限,考虑问题的全面性、深刻性不够,而盈亏问题中的相等关系是解决销售问题列方程的重要依据,因此确定本节的重、难点如下:

重点:能利用一元一次方程解决商品销售中的实际问题。

难点:弄清商品销售中的“进价”、“售价”、“利润”、“利润率”的含义以及这些基本量之间的关系。

突破本节课重、难点的方法 :弄清问题背景,分析清楚相关数量关系,找出可以作为列方程依据的主要相等关系。

(三)、教具准备 多媒体课件

二、教学策略

根据这节课的特点,在教学策略上分为两步:

(一)问题——在生活中产生

根据初一学生活泼、好奇的性格特点,课程一开始就创设了情境,使数学问题生活化,与学生的现实生活联系起来,这样可使学生在数学活动的情境中借助已有的生活经验,去感受,去经历,从而促使学生发现问题、提出问题和解决问题。上一节课我提前给学生留了一个特殊的作业,让他们作一个市场调查,了解进价、售价、利润、利润率之间的关系,初步理解在销售中的盈亏问题,为本节课的学习奠定基础。

(二)问题——在探究中解决

考虑到本节课的特点,我准备充分发挥每个学生的主动性,让学生先认真分析各自的调查情况,再结合多媒体图片和老师出的问题,引导学生自主学习、合作学习和探究学习,以小组的形式讨论、归纳、总结出“进价”“售价”“利润”“利润率”之间的关系,进而利用关系探究新知,解决实际问题。

三、学情分析

1、学生社会知识有限,往往弄不清销售问题中的有关概念,理解不清概念之间的关系。

2、学生在列方程解应用题时,可能存在两个方面的困难:

(1)抓不准相等关系;

(2)习惯于用小学算术解法,不适应用方程解决应用题。

3、学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是。作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4、学生在学习过程中可能不完全理解概念之间的关系,而习惯于套题型,找解题模式。

四、教学过程

根据初一学生的认知规律和新课标教学理念,在课堂教学中分为七步:

(一)创设情境,导入新课

出示多媒体图片,创设问题情境。

(二)提出问题,归纳公式

学生以小组合作,讨论得出下面概念的含义。

进价:购进商品时的价格(有时也叫成本价)

售价:在销售商品时的价格(有时叫卖出价)

打折:卖货时,按照标价乘以十分之几或百分之几十。

利润:在销售过程中的纯收入。即:利润 = 售价0.25y元,列出方程 y(1-0.25)= 60,解得 y =80。(亏损就是负盈利,即利润为-0.25y元)

两件衣服的进价是x + y = 48 + 80 = 128 元,而两件衣服的售价是60 + 60 = 120元,进价 大 于售价,可知卖这两件衣服总的盈亏情况是亏损8元。(将结论与先前的估算进行比较)

(设计意图:通过学习前面三个问题,学生掌握了一些销售知识,在此基础上,我针对例题又设计了这道填空题,使学生初步感受“数学建模”的方法,更好地培养学生有条理地进行思考和表达,从而突破本节课重点。)

(四)新知应用

1、巩固练习

新华书店出售A、B两种不同型号的学习机,每台售价为960元。A型一台盈利20%,B型一台亏损20%。该书店出售A、B型学习机各一台是盈利还是亏损,或是不盈不亏?

2、拓展延伸

商场将某款服装按标价打9折出售,仍可盈利10%,已知该款服装的标价是330元,那么该款服装的进价是多少元?

(设计意图: 为了及时检测学生掌握的情况,培养学生类比解决问题的能力,巩固所学方法,渗透数学建模思想,设计了两道练习题。)

(五)总结升华

让学生谈谈收获:

1、本节学了哪些知识?

2、商品销售中的盈亏是如何计算的?

3、用一元一次方程解决实际问题的关键是找出什么?

(设计意图:通过师生对话式交流,让学生真正意识到数学来源于生活,服务于生活,我们要努力学好数学,增强学生的求知欲。)

(六)布置作业 作业:课本习题3.4第3题、第4题

(七)板书设计

销售中的盈亏

1、基本概念:

2、公式

进价: 利润率= ×100% = ×100%

售价: 售价=进价×(1+利润率)

利润:

利润率:

(设计意图: 简洁美观的板书设计给学生以美感,同时可以使学生感到脉络清晰,对本节的重点有个整体认识。)

我的说课完毕,谢谢各位评委老师!

第四篇:实际问题与一元一次方程教案

实际问题与一元一次方程教案

教学目标:

一、知识和技能:

㈠知识目标:

1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.㈡能力目标:

数学思考:能结合实际问题背景发现和提出数学问题。

解决问题:能利用一元一次方程解决商品销售中的一些实际问题

二、过程与方法:.经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.三、情感态度与价值观目标:

1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.教学关键:明确问题中的数量关系,找出等量关系.教学课型:新授课

课时安排:一课时

教学方法:启发式讲授,与学生探索相结合,情境教学法。

教学准备:幻灯片出示探究题目,三四个可供标价的纸板

教学过程:

一、引入新课

做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?)→→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。

(1)商品利润=商品售价-商品进价.(2)商品利润率=.(3)打x折的售价=原售价×.二、新授

第一大部分

探究1:销售中的盈亏.某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

①由学生借以往经验解决(极有可能使用四则运算),作出判断.②要求应用方程

再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设

④学生自主修整完成该方程,进而解决问题.解:设„„„„„„„„

————————=——---

„„„„„„„„

„„„„„„„„

答:„„„„„„„„.另外:求出方程的解后,一定要检验解的合理性.题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.第一大部分附题

随堂练习1:

刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?

分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。

“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?

解:设„„„„„„„„

————————=——---

„„„„„„„„

„„„„„„„„

答:„„„„„„„„.求出方程的解后,一定要检验解的合理性.随堂练习2:较难的一道利润问题

某商品去年提价25%,今年要恢复原价,应下调几个百分点?

分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x

Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调

m个百分点.Ⅳ [(1+25%)x](1-m%)=x

Ⅴ 将Ⅳ中可简化为(1+25%)x(1-m%)=x

Ⅵ 由学生努力解决这种含有两个未知数的方程,并做演示讲解

Ⅶ 老师分析两个未知数之一在该题中起一个解释说明的作用

并且能够借助等式的性质2.消去x

Ⅷ 方程简单变形为(1+25%)(1-m%)=1

问题得以解决

第三大部分

探究2:油菜种植的计算.某村去年种植的油菜籽亩产量达160千克,含油率为40%。今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?

分析完成[重点是翻译]过程

①亩产量达160千克,含油率为40%。————160×40%

亩产量提高了20千克————﹙160+20﹚

提高了10个百分点————40%+10%

„„„„

②可设今年油菜种植面积是x亩.③让x能够参与其中,开始第二遍审题

去年:(x+44)亩 今年:x亩

160(x+44)﹙160+20﹚

160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x

由“本村所产油菜籽的产油量提高20%”

得到

160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x

„„„„„„„„„„„„

„„„„„„„„„„„„

答:________________________________.第四大部分

课堂小结:

一、归纳:

用一元一次方程分析和解决实际问题的基本过程.学生:________________________________________

二、小结:

这节课你学会了什么?

学生们:_______________________________________

三、作业:

课本第108页习题3.4第3、4题.选用课时作业设计

第一课时作业设计

一、填空题.⒈某商品原标价为165元,降价10%后,售价为_____元,若成本为110元,则利润为______元.⒉新华书店一天内销售甲种书籍共卖得1560元,其利润率为25%,•则这一天售出甲种书的总成本为_______元.二、选择题.⒊下面四个关系中,错误的是().A.商品利润率=;B.商品利润率= C.商品售价=商品进价×(1+利润率)D.商品利润=商品利润率×商品进价

⒋ 一件商品标价a元,打九折后售出为 a元,如果再打一次九折,•那么现在的售价是()元.A.(1+)a B.a

三、解答题.⒌甲种商品每件的进价是400元,现按标价560元的8折出售,•乙种商品每件的进价是600元,现按标价1100元的六折出售,相比较哪种商品的利润率高一些?

答案:

一、1.148.5 38.5 2.1248

二、⒊ B ⒋ B •

三、⒌ 甲商品利润率为12%,•乙商品的利润率为10%,甲商品比乙商品利润率高.

第五篇:实际问题与一元一次方程教案

实际问题与一元一次方程教案

教学目标:

一、知识和技能:

㈠知识目标:

1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.㈡能力目标:

数学思考:能结合实际问题背景发现和提出数学问题。

解决问题:能利用一元一次方程解决商品销售中的一些实际问题

二、过程与方法:.经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.三、情感态度与价值观目标:

1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.教学关键:明确问题中的数量关系,找出等量关系.教学课型:新授课

课时安排:一课时

教学方法:启发式讲授,与学生探索相结合,情境教学法。

教学准备:幻灯片出示探究题目,三四个可供标价的纸板

教学过程:

一、引入新课

做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?)→→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。

(1)商品利润=商品售价-商品进价.(2)商品利润率= 商品利润÷商品进价.(3)打x折的售价=原售价×

x 10

二、新授课

第一大部分

探究1:销售中的盈亏.某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

①由学生借以往经验解决(极有可能使用四则运算),作出判断.②要求应用方程

再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设

④学生自主修整完成该方程,进而解决问题.另外:求出方程的解后,一定要检验解的合理性.题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.第一大部分附题

随堂练习1:

小红以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?

分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。

“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?

求出方程的解后,一定要检验解的合理性.随堂练习2:较难的一道利润问题

某商品去年提价25%,今年要恢复原价,应下调几个百分点?

分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x

Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调

m个百分点.Ⅳ [(1+25%)x](1-m%)=x

Ⅴ 将Ⅳ中可简化为(1+25%)x(1-m%)=x

Ⅵ 由学生努力解决这种含有两个未知数的方程,并做演示讲解

Ⅶ 老师分析两个未知数之一在该题中起一个解释说明的作用

并且能够借助等式的性质2.消去x

Ⅷ 方程简单变形为(1+25%)(1-m%)=1

问题得以解决

第三大部分

探究2:油菜种植的计算.某村去年种植的油菜籽亩产量达160千克,含油率为40%。今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?

分析完成[重点是翻译]过程

①亩产量达160千克,含油率为40%。————160×40%

亩产量提高了20千克————﹙160+20﹚

提高了10个百分点————40%+10%

„„„„

②可设今年油菜种植面积是x亩.③让x能够参与其中,开始第二遍审题

去年:(x+44)亩 今年:x亩

160(x+44)﹙160+20﹚

160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x

由“本村所产油菜籽的产油量提高20%”

得到

160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x

„„„„„„„„„„„„

„„„„„„„„„„„„

答:________________________________.第四大部分

课堂小结:

一、归纳:

用一元一次方程分析和解决实际问题的基本过程.学生:________________________________________

二、小结:

这节课你学会了什么?

学生们:_______________________________________

三、作业:

课本第108页习题3.4第3、4题.

下载人教版七年级数学上册教案之实际问题与一元一次方程(5篇范例)word格式文档
下载人教版七年级数学上册教案之实际问题与一元一次方程(5篇范例).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐