高中数学新课程创新教学设计案例50篇_6_函_数_的_概_念.

时间:2019-05-12 18:24:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学新课程创新教学设计案例50篇_6_函_数_的_概_念.》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学新课程创新教学设计案例50篇_6_函_数_的_概_念.》。

第一篇:高中数学新课程创新教学设计案例50篇_6_函_数_的_概_念.

函 数 的 概 念 教材分析

与传统课程内容相比,这节内容的最大变化就是函数概念的处理方式.事实上,“先讲映射后讲函数”比“先讲函数后讲映射”,有利于学生更好地理解函数概念的本质.第一,在初中函数学习基础上继续深入学习函数,衔接自然,利于学生在原有认知基础上提升对函数概念的理解;第二,直接进入函数概念的学习更有利于学生将注意力放在理解函数概念的学习上,而不必花大量精力学习映射,使其认识映射与函数的关系后才能理解函数的概念.

函数概念是中学数学中最重要的概念之一.函数概念、思想贯穿于整个中学教材之中.通过实例,引导学生通过自己的观察、分析、归纳和概括,获得用集合与对应语言刻画的函数概念.

对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质.教学重点是函数的概念,难点是对函数概念的本质的理解. 教学目标

1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

2.了解构成函数的要素,会求一些简单函数的定义域和值域. 3.了解映射的概念. 任务分析

学生在初中对函数概念有了初步的认识.这节课的任务是在学生原认知水平的基础上,用集合与对应的观点认识函数,了解构成函数定义的三要素,认识映射与函数是一般与特殊的关系. 教学设计

一、问题情景

1.一枚炮弹发射后,经过60s落到地面击中目标.炮弹的射高为4410m,且炮弹距地面的高度h随时间t的变化规律是h=294t-4.9t2,(0≤t≤60,0≤h≤4410). 2.近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.下图中的曲线显示了南极上空臭氧层空洞的面积从1979年到2001年的变化情况.

3.国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化. 表6-1 “八五”计划以来我国城镇居民恩格尔系数变化情况

问题:分析以上三个实例,对任一个给定的t,射高h、臭氧层空洞面积S、恩格尔系数是否有值与之对应?若有,有几个?

二、建立模型

1.在学生充分分析和讨论的基础上,总结归纳以上三个实例的共同特点

在三个实例中,变量之间的关系都可以描述成两个集合间的一种对应关系:对于数集A中的任一个x,按照某个对应关系,在数集B中都有唯一确定的值与之对应.

2.教师明晰

通过学生的讨论归纳出函数的定义:

设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任一个x,在集合B中都有唯一确定的数f(x)与它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.其中,x叫作自变量,x的取值范围A叫作函数的定义域,与x的值相对应的y叫作函数值,函数值的集合:{y|y=f(x),x∈A}叫作函数的值域.

注意:(1)从函数的定义可以看出:函数由定义域、对应法则、值域三部分组成,它们称为函数定义的三要素.其中,y=f(x)的意义是:对任一x∈A,按照对应法则f有唯一y与之对应.

(2)在函数定义的三个要素中,核心是定义域和对应法则,因此,只有当函数的对应关系和定义域相同时,我们才认为这两个函数相同. 思考:函数f(x)=

三、解释应用

[例 题] 与g(x)=是同一函数吗?

1.指出下列函数的定义域、值域、对应法则各是什么?如何用集合与对应的观点描述它们?

(1)y=1,(x∈R).(2)y=ax+b,(a≠0).

(3)y=ax2+bx+c,(a>0).(4)y=kx,(k≠0). 解:(3)定义域:{x|x∈R},值域:{y|

y≥

(自变量)2+b·(自变量)+c,即:f:x→ax2+bx+c(1),(2),(4)略. }对应法则f:自变量→a 2.已知:函数f(x)=(1)求函数的定义域.

(2)求f(-3),f()的值.

(3)当a>0时,求f(a),f(a-1)的值. 目的:深化对函数概念的理解. 3.求下列函数的值域.

(1)f(x)=2x.(2)f(x)=1-x+x2,(x∈R).(3)y=3-x,(x∈N).

解:(1){y|y≠0}.(2){y|

y≥}.(3){3,2,1,0,-1,-2,…}. 4.(1)已知:f(x)=x2,求f(x-1).(2)已知:f(x-1)=x2,求f(x). 目的:深化对函数符号的理解. 解:(1)f(x-1)=(x-1)2.

(2)f(x-1)=x2=[(x-1)+1]2=(x-1)2+2(x-1)+1. ∴f(x)=x2+2x+1. [练习]

1.求下列函数的定义域.

2.已知二次函数f(x)=x2+a的值域是[-2,+∞),求a的值. 3.函数f(x)=[x],[x]表示不超过x的最大整数,求:(1)f(3.5),(2)f(-3.5).

四、拓展延伸

在函数定义中,将数集推广到任意集合时,就可以得到映射的概念. 集合A={a1,a2}到集合B={b1,b2}的映射有哪几个? 解:共有4个不同的映射.

思考:集合A={a1,a2,a3}到B={b1,b2,b3}的映射有多少个? 点 评

这篇案例设计完整,条理清楚.案例从三个方面(实际是函数的三种表示方法,为后续内容埋下伏笔)各举一个具体事例,从中概括出函数的本质特征,得出函数概念,体现了由

具体到抽象的认知规律,有利于学生理解函数概念,更好地体现了数学从实践中来.例题、练习由浅入深,完整,全面.映射的概念作为函数概念的推广,处理方式有新意.“拓展延伸”的设计为学生加深对概念的理解,提供了素材.

在“问题情景”中的三个事例中,第一个例子中的“对应关系”比较明显,后两个例子则不太明显.如果能在教学设计中加以细致对比说明,效果会更好.

第二篇:高中数学新课程创新教学设计案例50篇 12 对 数 函 数

对 数 函 数

教材分析

对数函数是一类重要的函数模型,它与指数函数互为反函数.教材是在学生学过指数函数、对数及其运算的基础上引入对数函数的概念的.须要说明的是,这里与传统的教材有所不同,即没有先学习反函数,这对学生学习对数函数的概念、图像及性质有较大影响,使指数函数的知识点不能直接应用于对数函数的知识点,但从对数的定义中知道:指数式与对数式可互化.因此,在某些方面,如在画对数函数y=log2x的图像列表时,可以把画指数函数y=2x图像时列的表中的x与y的值对调.这节内容的重点是对数函数的概念、图像及性质,难点是对数函数与指数函数的关系.

教学目标

1.通过具体实例,直观了解对数函数模型刻画的数量关系,初步理解对数函数的概念,并能画出具体对数函数的图像,掌握对数函数的图像和性质.

2.知道指数函数y=ax与对数函数y=logax互为反函数(a>0且a≠1). 3.能应用对数函数的性质解有关问题.

任务分析

首先复习指数函数、对数的定义及对数的性质,这也是学习本节内容的基础.解析式x=logay是函数,叫作对数函数,为了符合习惯,常写成y=logax.这些内容学生较难理解,教学时要引起重视.教学中,要注意从实例出发,使学生从感性认识提高到理性认识;要注意运用对比的方法;要结合对数函数的图像抽象概括对数函数的性质.注意:不要求讨论形式化的函数定义,也不要求求已知函数的反函数,只须知道对数函数与指数函数互为反函数.

教学设计

一、问题情境

同指数函数中的细胞分裂问题,即:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……1个这样的细胞分裂x次后,得到的细胞的个数为y.

我们已经知道,个数y是分裂次数x的函数,解析式是y=2x.形式上是指数函数(这里的定义域是N).

思考:在这个问题中,细胞分裂的次数x是不是细胞分裂个数y的函数?若是,这个函数的解析式是什么? x也是y的函数,由对数的定义得到这个新函数是x=log2y.其中,细胞的个数y是自变量,细胞分裂的次数x是函数.

二、建立模型 1.学生讨论

(1)函数x=log2y与指数函数y=2x有何关系?

(2)函数x=log2y中的自变量、字母与我们以前所学的函数有何区别?

结论:问题(1):两函数中的x表示的都是细胞分裂的次数,y表示的都是细胞分裂的个数,对应法则都是以2为底数,一个是取对数,一个是取指数,正好相逆.

注意:这里不能说它们互为反函数,因为还没有学习反函数的概念.

问题(2):这里的自变量所用字母是y,以前学习的函数的自变量常用字母x,即这里的用法不合习惯.

2.教师明晰

定义:函数x=long2y,(a>0,且a≠1)叫作对数函数,它的定义域是(0,+∞),值域是(-∞,+∞).

由对数函数的定义可知,在指数函数y=ax和对数函数x=logay中,x,y两个变量之间的关系是一样的.不同的只是在指数函数y=ax里,x是自变量,y是因变量,而在对数函数x=logay中,y是自变量,x是因变量.习惯上,我们常用x表示自变量,y表示因变量,因此,对数函数通常写成y=logay,(a>0且a≠1,x>0).

3.练习

在同一坐标系中画出下列函数的图像.

(1)y=long2x.

(2)y=解:列表:

表12-1

思考:上表中的x,y的对应值与指数函数中所列表的对应值有何关系? 描点,画图:

4.观察上面的函数图像,结合列表,仿照指数函数的性质,归纳总结出对数函数的性质

(1)定义域是(0,+∞),值域是(-∞,+∞).(2)函数图像在y轴的右侧且过定点(1,0).

(3)当a>1时,函数在定义域上是增函数,且当x>1时,y>0;当0<x<1时,y<0.

当0<a<1时,函数在定义域上是减函数,且当x>1时,y<0;当0<x<1时,y>0.

三、解释应用

[例 题]

1.求下列函数的定义域.

(1)y=log2x2.

(2)y=loga(4-x).

(3)y=

解:(1){x|x≠0}.

(2)(-∞,4).

(3)(0,1). 2.比较下列各组数的大小.(1)log23与log23.5.

(2)loga5.1与loga5.9,(a>0且a≠1).(3)log67与log76. 解:(1)考查对数函数y=log2x. ∵2>1,∴它在(0,+∞)上是增函数. 又3<3.5,∴log23<log23.5.

(2)当a>1时,loga5.1<loga5.9; 当0<a<1时,loga5.1>loga5.9.(3)log67>1>log76.

总结:本例是利用对数的单调性比较两个对数的大小,当底数与1的大小不确定时,要分类讨论;当不能直接进行比较时,可在两个数中间插入一个已知数间接比较两个数的大小. 3.溶液的酸碱度是通过pH值来刻画的,pH值的计算公式为pH=-lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是mol/L.

(1)根据对数函数性质及上述pH值的计算公式,说明溶液的酸碱度与溶液中氢离子的浓度之间的变化关系.

(2)已知纯净水中氢离子的浓度为[H+]=10-7mol/L,计算纯净水的pH值. 解:(1)根据对数的性质,有

pH=-lg[H+]=lg[H+]-1=lg,所以溶液中氢离子的浓度越大,溶液的酸度就越小.

(2)当[H+]=10-7时,pH=-lg10-7=7,所以,纯净水的pH值是7.

4.设函数f(x)=lg(ax-bx),(a>1>b>0),问:当a,b满足什么关系时,f(x)在(1,+∞)上恒取正值?

解:当x∈(1,+∞)时,lg(ax-bx)>0恒成立令g(x)=ax-bx. ∵a>1>b>0,∴g(x)在(0,+∞)上是增函数,ax-bx>1恒成立. ∴当x>1时,g(x)>g(1)=a-b,∴当a-b≥1时,f(x)在(1,+∞)上恒取正值. [练习]

1.求函数y=的定义域.

2.比较log0.50.2与log0.50.3的大小.

3.函数y=lg(x2-2x)的增区间是 ____________ .

4.已知a>0,且a≠1,则在同一直角坐标系中,函数y=a-x和y=loga(-x)的图像有可能是().

5.大西洋鲑鱼每年都要逆流而上2000m,游回产地产卵.研究鲑鱼的科学家发现,一岁鲑鱼的游速可以表示为函数,单位是m/s,其中Q表示鲑鱼的耗氧量.

(1)当一条鲑鱼的耗氧量是2700个单位时,它的游速是多少?(2)计算一条鲑鱼的最低耗氧量.

四、拓展延伸

1.作出对数函数y=logax,(a>1)与y=logax,(0<a<1)的草图. 2.说出指数函数与对数函数的关系.

以指数函数y=2x与对数函数y=log2x为代表加以说明.

(1)对数函数y=log2x是把指数函数y=2x中自变量与因变量对调位置而得出的. 教师明晰:当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量.我们称这两个函数互为函数.函数y=f(x)的反函数记作:y=f-1(x). 对数函数y=log2x与指数函数y=2x互为反函数.

(2)对数函数y=log2x与指数函数y=2x的图像关于直线y=x对称.

(3)指数函数与对数函数对照表. 表12-2

点 评

这篇案例首先通过细胞分裂问题说明了对数函数的意义,这样安排既有利于学生理解对数函数的概念,又有利于学生了解了它与指数函数的关系.其次通过画具体的对数函数的图像,归纳总结出对数函数的性质,体现了由特殊到一般的认识规律,知识传授较为自然.性质的列举模仿了指数函数的性质.通过对比,便于学生理解、记忆.例题、练习的选配注意了题目的代表性,并且由易到难,注重学生解题能力的提高.拓展延伸侧重于指数函数与对数函数的图像、性质方面的关系,加深了学生对这两个函数的理解,并使学生从中了解了反函数的概念.

第三篇:高中数学新课程创新教学设计案例50篇 30 几何概型

几何概型

教材分析

和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率.它也是一种等可能概型.

教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.

这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.

教学目标

1.通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用. 2.通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.

3.通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.

任务分析

在这节内容中,介绍几何概型主要是为了更广泛地满足随机模拟的需要,因此,教学重点是随机模拟部分.这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.有条件的学校可以让学生用一种统计软件统计模拟的结果.

教学设计

一、问题情境

如图,有两个转盘.甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜. 问题:在下列两种情况下分别求甲获胜的概率.

二、建立模型 1.提出问题

首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关.即:字母B所在扇形弧长(或面积)与整个圆弧长(或面积)的比.接着提出这样的问题:变换图中B与N的顺序,结果是否发生变化?(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性).

题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型.

注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的.

(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积). 2.引导学生讨论归纳几何概型定义,教师明晰———抽象概括

如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

在几何概型中,事件A的概率的计算公式如下:

3.再次提出问题,并组织学生讨论

(1)情境中两种情况下甲获胜的概率分别是多少?

(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10min的概率.

通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法.

三、解释应用 [例 题]

1.假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.

分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.

解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以

解法2:设X,Y是0~1之间的均匀随机数.X+6.5表示送报人送到报纸的时间,Y+7表示父亲离开家去工作的时间.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.用计算机做多次试验,即可得到P(A).

教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验.强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率. 2.如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.

解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即

假设正方形的边长为2,则

由于落在每个区域的豆子数是可以数出来的,所以

这样就得到了π的近似值.

另外,我们也可以用计算器或计算机模拟,步骤如下:

(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;(2)经平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;

(3)数出落在圆内a2+b2<1的豆子数N1,计算子数).

(N代表落在正方形中的豆可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高.

本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积. [练习]

1.如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域. 2.利用随机模拟方法计算图30-5中阴影部分(y=1和y=x围成的部分)的面积.

23.画一椭圆,让学生设计方案,求此椭圆的面积.

四、拓展延伸

1.“概率为数„0‟的事件是不可能事件,概率为1的事件是必然事件”,这句话从几何概型的角度还能成立吗?

2.你能说一说古典概型和几何概型的区别与联系吗? 3.你能说说频率和概率的关系吗?

点 评

这篇案例设计完整,整体上按知识难易逐渐深入,同时充分调动了学生的积极性,以学生之间互动为主,教师引导为辅.例题既有深化所学知识的,又有应用所学知识的.“拓展延伸”既培养了学生的思维能力,又有利于学生从总体上把握这节课所学的知识.

第四篇:高中数学新课程创新教学设计案例古典概型

古典概型

教材分析

古典概型是概率中最基本、最常见而又最重要的类型之一.这节内容是在一般随机事件的概率的基础上,进一步研究等可能性事件的概率.教材首先通过一些熟悉的例子,归纳出古典概型的特征,进而给出古典概型的定义,这里渗透了从特殊到一般的思想.这节课的重点内容是古典概型的概念,难点是利用古典概型的概念求古典概率.

教学目标

1.通过实例对古典概型概念的归纳和总结,使学生体验知识产生和形成的过程,培养学生的抽象概括能力.

2.理解古典概型的概念,能运用所学概念求一些简单的古典概率,并通过实例归纳和总结出概率的一般加法公式.

3.通过对古典概型的学习,使学生进一步体会随机事件概率的实际意义.

任务分析

这节内容在学生已理解随机事件概率的基础上,由具体的例子抽象出古典概型的概念.在这里,一个试验是否为古典概型是难点,故要通过具体例子总结古典概型的两个共同特征,特别要注意反例的列举.

教学设计

一、问题情境

1.掷一颗骰子,观察出现的点数.这个试验的基本事件空间Ω={1,2,3,4,5,6}.它有6个基本事件.由于骰子的构造是均匀的,因而出现这6种结果的机会是均等的,均为

2.一先一后掷两枚硬币,观察正反面出现的情况.这个试验的基本事件空间Ω={(正,正),(正,反),(反,正),(反,反)}.它有4个基本事件.因为每一枚硬币“出现正面”与“出现反面”的机会是均等的,所以可以近似地认为出现这4种结果的机会是均等的,均为.

3.在适宜的条件下“种下一粒种子观察它是否发芽”.这个试验的基本事件空间为Ω={发芽,不发芽},而这两种结果出现的机会一般是不均等的.

二、建立模型

1.讨论以上三个问题的特征

在这里,教师可引导学生从试验可能出现的结果上以及每个结果出现的可能性上讨论. 结论:(1)问题1,2与问题3不相同.(2)问题1,2有两个共同特征:

①有限性.在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件. ②等可能性.每个基本事件发生的可能性是均等的. 2.古典概型的定义

通过学生的讨论,归纳出古典概型的定义.

如果一个随机试验有上述(2)中的两个共同特征,我们就称这样的试验为古典概型,上述前2个例子均为古典概型.

一个试验是否为古典概型在于这个试验是否具有古典概型的两个特征———有限性和等可能性,并不是所有的试验都是古典概型.例如,第3个例子就不属于古典概型.

3.讨论古典概型的求法

充分利用问题1,2抽象概括出古典概型的求法.

一般地,对于古典概型,如果试验的n个事件为A1,A2,…,An,由于基本事件是两两互斥的,则由互斥事件的概率加法公式,得

P(A1)+P(A2)+…+P(An)=P(A1∪A2∪…∪An)=P(Ω)=1. 又∵P(A1)=P(A2)=…=P(An),∴代入上式,得nP(A1)=1,即P(A1)=

∴在基本事件总数为n的古典概型中,每个基本事件发生的概率为.

如果随机事件A包含的基本事件数为m,同样地,由互斥事件的概率加法公式可得P(A)=mn,即

三、解释应用

.[例题一]

1.掷一颗骰子,观察掷出的点数,求掷得奇数点的概率. 注:规范格式,熟悉求法.

2.从含有两件正品a1,a2和一件次品b1的3件产品中每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.

[练习一]

在例2中,把“每次取出后不放回”换成“每次取出后放回”,其余条件不变,求取出的两件产品中恰有一件次品的概率.

注意:放回抽样与不放回抽样的区别. [例题二]

甲、乙两人做出拳游戏(锤子、剪刀、布).求:(1)平局的概率.(2)甲赢的概率.(3)乙赢的概率.

解:把甲、乙出的“锤子”、“剪刀”、“布”分别标在坐标轴上.

其中△为平局,⊙为甲赢,※为乙赢,一次出拳共有3×3=9种,结果如图29-1.设平局为事件A,甲赢为事件B,乙赢为事件C.

由古典概率的计算公式,得

思考:例3这类概率问题的解法有何特点?

[练习二]

抛掷两颗骰子,求:(1)点数之和出现7点的概率.(2)出现两个4点的概率. [例题三]

掷红、蓝两颗骰子,事件A={红骰子的点数大于3},事件B={蓝骰子的点数大于3},求事件A∪B={至少有一颗骰子点数大于3}发生的概率.

教师明晰:古典概型的情况下概率的一般加法公式. 设A,B是Ω中的两个事件.

P(A∪B)=P(A)+P(B)-P(A∩B),特别地,当A∩B=[练习三]

时,P(A∪B)=P(A)+P(B).

一个电路板上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63.问:至少有一根熔断的概率是多少?

四、拓展延伸

每个人的基因都有两份,一份来自父亲,另一份来自母亲.同样地,他的父亲和母样的基因也有两份.在生殖的过程中,父亲和母亲各自随机地提供一份基因给他们的后代.

以褐色的眼睛为例,每个人都有一份基因显示他眼睛的颜色:(1)眼睛为褐色.(2)眼睛不为褐色.

如果孩子得到父母的基因都为“眼睛为褐色”,则孩子的眼睛也为褐色.如果孩子得到父母的基因都为“眼睛不为褐色”,则孩子眼睛不为褐色(是什么颜色取决于其他的基因).如果孩子得到的基因中一份为“眼睛为褐色”,另一份为“眼睛不为褐色”,则孩子的眼睛不会出现两种可能,而只会出现眼睛颜色为褐色的情况.生物学家把“眼睛为褐色”的基因叫作显性基因.

为方便起见,我们用字母B代表“眼睛为褐色”这个显性基因,用b代表“眼睛不为褐色”这个基因.每个人都有两份基因,控制一个人眼睛颜色的基因有BB,Bb(表示父亲提供基

因B,母亲提供基因b),bB,bb.注意在BB,Bb,bB和bb这4种基因中只有bb基因显示为眼睛颜色不为褐色,其他的基因都显示眼睛颜色为褐色.

假设父亲和母亲控制眼睛颜色的基因都为Bb,则孩子眼睛不为褐色的概率有多大?

点 评

这篇案例设计思路清晰,重点突出,目标明确,为分散难点案例采用了从具体到抽象的方法,充分展示了知识的形成过程,使学生感到自然,没有突兀感,符合学生的认知规律.例题的设计有梯度,跟踪练习有针对性,教学过程充分发挥了学生自主学习和合作学习的学习方式,对学生后继学习能力的培养有积极的作用.

第五篇:第二部分高中数学新课程创新教学设计案例

第二部分 高中数学新课程创新教学设计案例

正弦函数的性质

教材分析

这篇案例的内容是在学生已经掌握正弦函数图像的基础上,通过观察、归纳和总结,得出正弦函数的五个重要性质,即正弦函数的定义域、值域、周期性、奇偶性和单调性.教学重点是正弦函数的图像特征及五个重要性质,难点是周期函数及最小正周期的意义.由于周期函数的概念比较抽象,因此,在引入定义之前,应注意通过具体实例让学生充分体会这种“周而复始”的现象,体会新概念的形成过程.

教学目标

1.引导学生通过观察,分析y=sinx的图像,进而归纳、总结出正弦函数的图像特征,并抽象出函数性质,培养学生观察、分析图像的能力和数形结合的能力.

2.理解和掌握正弦函数的五个重要性质,能够解决与正弦函数有关的函数的值域、最小正周期及单调区间等简单问题.

3.使学生进一步了解从特殊到一般、从一般到特殊的思维方法,体会分析、探索、化归、类比的科学研究方法在解决数学问题中的应用.

4.使学生初步体会事物周期变化的一些奥秘,进一步提高学生对数学的学习兴趣.

任务分析

这节内容是在学生已经掌握了正弦函数图像特征的基础上,运用数学的符号语言把图像特征进一步“量化”,从而得出正弦函数的五个性质.一般来说,从正弦曲线的形状,可以很清晰地看出正弦函数的定义域、值域、最值、符号、周期性、奇偶性、单调性等,但对于周期性及单调区间的表述,学生可能会有一定的困难.因此,在引入周期函数的定义之前,要让学生充分观察图像,必要时可把物理中的弹簧振动的实验再做一做,让学生体会“周而复始”的现象,体会概念的形成过程.

此外,对于周期函数,还应强调以下几点: 1.x应是“定义域内的每一个值”.

2.对于某些周期函数,在它所有的周期中,不一定存在一个最小的正周期,即某些周期函数没有最小正周期. 3.对于一个周期函数f(x),如果在它的所有周期中存在一个最小的正数,那么这个最小的正数就叫作f(x)的最小正周期.今后涉及的周期,如果不加特殊说明,一般都是指函数的最小正周期.

教学设计

一、问题情境

1.教师提出问题,引导学生总结

我们学习过正弦函数图像的画法,并通过观察图像,得到了正弦曲线的一些特征,那么这些特征体现了正弦函数怎样的性质呢?

用投影胶片展示正弦曲线,引导学生探索正弦函数的性质:

注:由此学生得出正弦函数的如下性质:(1)定义域为R.

(2)值域为[-1,1],当且仅当x=2kπ+当且仅当x=2kπ-

(k∈Z)时,正弦函数取得最大值1,(k∈Z)时,正弦函数取得最小值-1.

注:在此处,教师应提醒学生注意前面的“2kπ”,使学生初步感受一下正弦函数的“周而复始”性.

2.教师进一步提出问题

从正弦曲线我们注意到,函数y=sinx在x∈[-2π,0],x∈[2π,4π],x∈[4π,6π],…时的图像与x∈[0,2π]的形状完全一样,只是位置不同,这种特征体现了正弦函数的什么性质呢?

(设计目的:引导学生从物理中弹簧的振动,即小球在平衡位置的往复运动,体会事物的“周期性”变化)

(2)数学中的这种周期性变化能否用一个数学式子来体现?

二、建立模型 1.引导学生探究

2.教师明晰

通过学生的讨论,归纳出周期函数的定义:

一般地,对于函数y=f(x),如果存在一个非零常数T,使定义域内的每一个x值,都满足f(x±T)=f(x),那么函数f(x)就叫作周期函数,非零常数T叫作这个函数的周期.

说明:若学生归纳和总结出周期函数的如下定义,也应给以充分的肯定.

如果某函数对于自变量的一切值每增加或减少一个定值,函数值就重复出现,那么这个函数就叫作周期函数.

给出最小正周期的概念:对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫作它的最小正周期.教科书中今后涉及的周期,如果不加特殊说明,一般都是指函数的最小正周期.

3.深化定义的内涵

(1)观察等式sin(y=sinx的周期?为什么?

+)=sin是否成立?如果成立,能不能说是正弦函数(2)函数f(x)=c是周期函数吗?它有没有最小正周期? 3.归纳正弦函数的性质

通过观察图像,我们得到了正弦函数的定义域、值域、周期性等性质,除此之外,正弦函数还有哪些性质呢?

教师引导学生归纳出以下两条性质:

奇偶性:由诱导公式sin(-x)=-sinx,知正弦函数是奇函数,其图像关于原点对称. 单调性:观察正弦曲线可以看出,当x由-由-1增大到1;当x由

增大到

增大到时,曲线逐渐上升,sinx的值

时,曲线逐渐下降,sinx的值由1减小到-1.因此,+2kπ](k∈Z)上都是增函数,其值从-1+2kπ](k∈Z)上都是减函数,其值从1减正弦函数在每一个闭区间[-增大到1;在每一个闭区间[小到-1.

三、解释应用 1.例题分析

+2kπ,+2kπ,例1 求使下列函数取得最大值和最小值的x的集合,并说出最大值和最小值是什么.(1)y=sin2x.

(2)y=sinx+2.

(3)y=asinx+b.

(4)y=2cos2x+5sinx-4.

解:(1)当2x=2kπ+(k∈Z),即x=kπ+(k∈Z)时,函数y=sin2x取得最

(k∈Z)时,函数y=sin2x大值,最大值是1;当2x=2kπ-取得最小值,最小值是-1.

(k∈Z),即x=kπ-∴使函数取得最大值的x的集合为{x|x=kπ+取得最小值的x的集合为{x|x=kπ-

(k∈Z)},最大值是1;使函数

(k∈Z)},最小值是-1.

(2)由于函数y=sinx与函数y=sinx+2同时取得最大值和最小值.因此,当x=2kπ+(k∈Z)时,函数y=sinx+2取得最大值,最大值为3;当x=2kπ-

(k∈Z)时,函数y=sinx+2取得最小值,最小值为1.

∴使函数取得最大值的x的集合为{x|x=2kπ+取得最小值的x的集合为{x|x=2kπ-

(k∈Z)},最大值为3;使函数

(k∈Z)},最小值为1.

(3)当a>0时,使函数取得最大值时的x的集合为{x|x=2kπ+=a+b;使函数取得最小值时的x的集合为{x|x=2kπ-

(k∈Z)},ymax

(k∈Z)},ymin=-a+b. 当a<0时,使函数取得最大值时的x的集合为{x|x=2kπ-a+b;使函数取得最小值时的x的集合为{x|x=2kπ+

(k∈Z)},ymax=-

(k∈Z)},ymin=a+b.

(4)y=2cos2x+5sinx-4=-2sin2x+5sinx-2=

设t=sinx,则y=二次函数的最大值和最小值问题了.,且t∈[-1,1],于是问题就变成求闭区间上当t=1,即sinx=1时,ymax=1,取最大值时x的集合为{x|x=2kπ+

(k∈Z)};

当t=-1,即sinx=-1时,ymin=-9,取最小值时x的集合为{x|x=2kπ-∈Z)}.[练习]

求下列函数的最值,以及使函数取得值时的自变量x的集合.

(k(1)y=|a|sinx+b.

(2)y=-sin2x+例2 求下列函数的周期.

sinx+.

(1)y=sin2x.

(2)y=.

解:(1)要求函数y=sin2x的周期,只须寻求使等式sin2(x+T)=sin2x恒成立的最小正数T即可.

∵使sin(2x+2T)=sin2x恒成立的正数2T的最小值是2π,∴当2T=2π时,T=π. 因此,函数y=sin2x的周期为π.

(2)要求函数y=的周期,只须寻求使等式 2.教师启发,诱导学生自主反思

(1)从上面的例题分析中,你是否有所发现?(这类函数的周期好像只与x的系数有关)

(2)一般地,函数y=Asin(ωx+φ)(其中A≠0,ω>0,x∈R)的周期是多少? [要求函数y=Asin(ωx+φ)的周期,只须寻求使等式Asin[ω(x+T)+φ]=Asin(ωx+φ),即Asin(ωx+φ+ωT)=Asin(ωx+φ)恒成立的最小正数T即可.

∵使Asin(ωx+φ+ωT)=Asin(ωx+φ)恒成立的正数ωT,最小值是2π,∴当ωT=2π时,T=.因此,函数y=Asin(ωx+φ)(A≠0,ω>0,x∈R)的周期为3.巩 固 [练习] 求下列函数的周期.

4.进一步强化

例3 不求值,指出下列各式大于零还是小于零.

例4 确定下列函数的单调区间.(1)y=1-sin3x.

(2)y=log2sin3x.

四、拓展延伸

1.若常数T为f(x)的周期,nT(n∈N*)是否也是它的周期? 2.你能证明正弦函数的最小正周期是2π吗?

3.某港口的水深y(m)是时间t(0≤t≤24,单位:h)的函数,下面是该港口的水深表: 表35-1

经过长时间的观察,描出的曲线如图所示,经拟合,该曲线可近似地看成正弦函数y=Asinωt+B的图像.

(1)试根据数据表和曲线,求出函数y=Asinωt+B的表达式.

(2)一般情况下,船舶航行时船底同海底的距离不少于4.5m时是安全的.如果某船的吃水深度(船底与水面的距离)为7m,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间(忽略离港用的时间)?

下载高中数学新课程创新教学设计案例50篇_6_函_数_的_概_念.word格式文档
下载高中数学新课程创新教学设计案例50篇_6_函_数_的_概_念..doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐