整数大小的比较和求一个整数的近似数 教学设计

时间:2019-05-12 20:46:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《整数大小的比较和求一个整数的近似数 教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《整数大小的比较和求一个整数的近似数 教学设计》。

第一篇:整数大小的比较和求一个整数的近似数 教学设计

整数大小的比较和求一个整数的近似数 教学设计

教学目的:

1.使学生掌握亿级的数的大小比较方法。

2.会用“四舍五入法”求亿以上的数的近似数。

3.建立自然数的概念。

4.培养学生比较、分析的思维方法。

教学重、难点:比较亿以上的数的大小是重点;省略亿后面的尾数,求近似数是学习的难点。

教学过程:

一、教学自然数概念

我们数物体的个数用的1,2,3,4,...10,11...叫做自然数。

提问:

1.这些自然数是怎样排列的?

2.每相邻的两个自然数的差是几?

3.最小的自然数是谁?

4.有没有最大的自然数?

引导学生得出:自然数每相邻的两个数中,后面的一个数比前面的一个多1,最小的自然数是0,没有最大的自然数,因为数数总也数不完,数出一个很大的数以后还可以再数出一个比它大1的数,所以自然数的个数是无限多的。

提问:

1.一个物体也没有怎样表示?

2.0是不是自然数?

引导学生得出:一个物体也没有,用0表示。0也是自然数。

自然数都是整数,我们在小学学的整数仅限于自然数范围,其它的整数以后再学。

二、教学整数大小的比较

1.复习准备

在下面○里填上“>”、“<”或“=”。

99999999○10000000065432○754328909034○890803提问:

(1)每一组两个数是怎样比较的?

引导学生说出:两个数的位数不同,位数多的数就大,八位数小于九位数,所以填“<”。

(2)第二组两个数都是五位数,你是怎样比较的?

引导学生说出:两个五位数比较,万位上大的那个数就大;所以应该填“<”。

(3)第三组的两个数你是怎样比较的?

引导学生说出:这两个数的位数相同,就从最高位比起;如果最高位上数相同,依次比较下一位......相同数位上数大的那个数大,所以应填“>”。

2.新课引入。

我们已经学过亿以内的数比较大小,今天我们要学习的第一个内容是亿以上数比较大小。(板书课题:整数大小的比较)

3.出示例4。

比较下面每组中两个数的大小。

999999999○1000000000

提问:

(1)这两个数各是几位数?它们的最高位各是什么位?应填什么符号?

(2)如果两个数的位数不同,怎样比较大小呢?

最后得出:两个数的位数不同,位数多的那个数大。

出示第二组数,把复习题中的第二组数末尾各添4个0。

654320000○754320000

学生观察后独立解答,思考这两个数的特点,怎样比较它们的大小。

从而得出:这两个数位数相同,从最高位比起,6亿多比7亿多小,应该填“<”。出示第三组数,把复习题中的第三组两个数末尾各添3个0。8909034000○8908034000

这两个数都是十位数,并且左起第一位都是8,你怎样比较?

学生独立比较后说出:左起第一位相同,依次比较左起第二位......到第四位数百万位上的9比第二个数百万位上的8大,所以应填“>”。

启发学生逐步总结出完整的比较数的大小的方法。

提问:

(1)比较两个数的大小有几种情况?位数不同的怎么比?

(2)位数相同的两个数怎样比?先从哪一位比?如果左起第一位上的数也相同,怎么比呢?在学生讨论的基础上总结出整数大小比较的一般方法,(把复习时的板书补充完整)明确以前总结的方法同样适用于比较亿以上的数。

练一练:完成练习十的第1题。

三、教学求近似数

1.复习。

我们学过求一个亿以内数的近似数,请你们把下面各数省略万后面的尾数,求出近似数

7293805384000

提问:

省略万后面的尾数,根据哪一位上的数进行四舍五入?并说出求近似数的方法。

2.新课引入。

省略亿后面的尾数,我们也可以用同样的方法求它的近似数,这就是我们今天要学习的另一个内容。(板书课题:求一个整数的近似数)

3.出示例5。

省略下面各数亿位后面的尾数,求它们的近似数。

(1)1034500000(2)20897000000

同学们自己试做。

共同订正,让学生说一说是怎么想的。

根据学生的回答,教师强调,省略亿后面的尾数,只要看省略尾数的左边起第一位上的数是不是满5。不要管尾数后的几位是多少。

如第(1)题:104500000≈10亿

千万位上的数不满5,把亿位后面的尾数舍去。

如第(2)题:2087000000≈209亿

千万位上的数满5,把亿位后面的尾数舍去,在亿位上加1。

启发同学自己总结出求一个整数的近似数的方法。

阅读课本44页的求近似数的方法,并明确这种求近似数的方法叫做四舍五入法。(板书)

练一练:第44页“做一做”的第1,2题。

四、课堂练习

1.指导学生做练习十第2题:写出最大的九位数和最小的十位数。

应该怎样想?相邻的二人讨论。

教师启发学生根据数的大小比较来想。要想使九位数是最大的,那么从高位起每一位上的数都必须是最大的,因此只能是9,因而可以得出最大的九位数。同样想最小的十位数,每一位上的数必须是最小的,只能是0,但0不能做自然数的首位,所以最小的十位数是1000000000。

2.判断正误:

4528800000=45亿()

1214000000人≈12亿()

608754000000≈6088()

通过分析错误之处,启发同学说出求一个数的近似数应注意什么。

(1)求近似数应用“≈”符号。

(2)省略尾数后不要忘记写单位名称。

(3)求出一个数的近似数后,要写上计数单位。

3.总结性提问:

(1)怎样比较两个整数的大小?

(2)怎样省略亿后面的尾数,求它的近似数?

五、作业

练习十第3,4题。

第二篇:整数大小的比较和求一个整数的近似数教案

整数大小的比较和求一个整数的近似数教案

教学目标

(一)使学生掌握亿级的数的大小比较方法.(二)会用“四舍五入法”求亿以上的数的近似数.(三)建立自然数的概念.

(四)培养学生比较、分析的思维方法. 教学重点和难点

比较亿以上的数的大小是重点,省略亿后面的尾数,求近似数是学习的难点. 教学过程设计(一)教学自然数概念

我们数物体的个数用的1,2,3,4,„10,11„叫做自然数. 提问:

1.这些自然数是怎样排列的? 2.每相邻的两个自然数的差是几? 3.最小的自然数是几? 4.有没有最大的自然数?

引导学生得出:自然数每相邻的两个数中,后面的一个数比前面的一个多1,最小的自然数是1,没有最大的自然数,因为数数总也数不完,数出一个很大的数以后还可以再数出一个比它大1的数,所以自然数的个数是无限多的.

提问:

1.一个物体也没有怎样表示? 2.0是不是自然数?

引导学生得出:一个物体也没有,用0表示.0不是自然数. 自然数和0都是整数,我们在小学学的是大于0和等于0的整数,其它的整数以后再学,可以用图来表示.

(二)教学整数大小的比较 1.复习准备

在下面○里填上“>”、“<”或“=”.

99999999○100000000 65432○75432 8909034○8908034 提问:

(1)每一组两个数是怎样比较的?

引导学生说出:两个数的位数不同,位数多的数就大,八位数小于九位数,所以填“<”.

(2)第二组两个数都是五位数,你是怎样比较的?

引导学生说出:两个五位数比较,万位上大的那个数就大;所以应该填“<”.

(3)第三组的两个数你是怎样比较的?

引导学生说出:这两个数的位数相同,就从最高位比起;如果最高位上数相同,依次比较下一位„„相同数位上数大的那个数大,所以应填“>”.

2.新课引入.

我们已经学过亿以内的数比较大小,今天我们要学习的第一个内容是亿以上数比较大小.

(板书课题:整数大小的比较)3.出示例4.

比较下面每组中两个数的大小. 999999999○1000000000 提问:

(1)这两个数各是几位数?它们的最高位各是什么位?应填什么符号?(2)如果两个数的位数不同,怎样比较大小呢? 最后得出:两个数的位数不同,位数多的那个数大. 出示第二组数,把复习题中的第二组数末尾各添4个0. 654320000○754320000 学生观察后独立解答,思考这两个数的特点,怎样比较它们的大小. 从而得出:这两个数位数相同,从最高位比起,6亿多比7亿多小,应该填“<”.

出示第三组数,把复习题中的第三组两个数末尾各添3个0. 8909034000○8908034000 这两个数都是十位数,并且左起第一位都是8,你怎样比较?

学生独立比较后说出:左起第一位相同,依次比较左起第二位„„到第四位数百万位上的9比第二个数百万位上的8大,所以应填“>”.

启发学生逐步总结出完整的比较数的大小的方法. 提问:

(1)比较两个数的大小有几种情况?位数不同的怎么比?

(2)位数相同的两个数怎样比?先从哪一位比?如果左起第一位上的数也相同,怎么比呢?

在学生讨论的基础上总结出整数大小比较的一般方法,(把复习时的板书补充完整)明确以前总结的方法同样适用于比较亿以上的数.

练一练

完成练习十的第1题.(三)教学求近似数 1.复习. 我们学过求一个亿以内数的近似数,请你们把下面各数省略万后面的尾数,求出近似数.

729380 5384000 提问:

省略万后面的尾数,根据哪一位上的数进行四舍五入?并说出求近似数的方法.

2.新课引入.

省略亿后面的尾数,我们也可以用同样的方法求它的近似数,这就是我们今天要学习的另一个内容.(板书课题:求近似数)3.出示例5.

省略下面各数亿位后面的尾数,求它们的近似数.(1)1034500000(2)20897000000 同学们自己试做.

共同订正,让学生说一说是怎么想的.

根据学生的回答,教师强调,省略亿后面的尾数,只要看省略尾数的左边起第一位上的数是不是满5.不要管尾数后的几位是多少.

如第(1)题:10eq x(3)45000000154≈10亿 千万位上的数不满5,把亿位后面的尾数舍去. 如第(2)题:208eq x(9)7000000≈209亿

千万位上的数满5,把亿位后面的尾数舍去,在亿位上加1. 启发同学自己总结出求一个整数的近似数的方法.

阅读课本43页的求近似数的方法,并明确这种求近似数的方法叫做四舍五入法.(板书)练一练

第43页“做一做”的第1,2题.(四)课堂练习1.指导学生做练习十第2题:写出最大的九位数和最小的十位数. 应该怎样想?相邻的二人讨论.

教师启发学生根据数的大小比较来想.要想使九位数是最大的,那么从高位起每一位上的数都必须是最大的,因此只能是9,因而可以得出最大的九位数.同样想最小的十位数,每一位上的数必须是最小的,只能是0,但0不能做自然数的首位,所以最小的十位数是1000000000.

2.判断正误:

4528800000=45亿()1214000000人≈12亿()608754000000≈6088()通过分析错误之处,启发同学说出求一个数的近似数应注意什么.(1)求近似数应用“≈”符号.(2)省略尾数后不要忘记写单位名称.(3)求出一个数的近似数后,要写上计数单位. 3.总结性提问:

(1)怎样比较两个整数的大小?

(2)怎样省略亿后面的尾数,求它的近似数?(五)作业

练习十

第3,4题. 课堂教学设计说明

本节课是在学生掌握了多位数的读写法以后,学习整数大小的比较,以及以亿为单位,用四舍五入法求它的近似数.这部分知识与旧知识联系紧密,因此教学过程的设计,紧密联系旧知识,运用知识迁移规律,引导学生自己探索出新方法.

本课分为三个部分.首先建立自然数的概念.第二部分是整数大小的比较,由复习亿以内的数比较大小,引申到亿以上的数比较大小,分成数位相同和数位不同两种情况,引导学生总结出整数大小的比较方法.第三部分是求一个整数的近似数,是由复习省略万后面的尾数求近似数,类推到省略亿后面的尾数求近似数的方法,即四舍五入法,以培养学生推理能力.

练习采取边讲边练的形式,对课本习题适当指导.通过判断练习,纠正学生易错之处.

板书设计

整数大小的比较

99999999 100000000位数不同,位数多的数大

65432 75432位数相同,从最高位比,8909034 例4 999999999 8908034„„

1000000000 654320000 754320000 8909034000 8908034000 求一个整数的近似数

四舍五入法 省略万后面尾数求近似数

729380≈73万 5384000≈538万 例5 省略亿后面尾数,求近似数

判断正误.

(1)4528800000=45亿(×)(2)1214000000≈12亿(√)(3)6087540000000≈60875(×)

第三篇:《整数改写小数及其近似数》电教化教学设计

《整数改写小数及其近似数》教学设计

一、教学目标

1、知识与技能目标:根据整数相关知识,全面培养和发挥学生迁移思维能力,来全面掌握将不是整万或整亿的整数改写成用“万”或“亿”作单位的小数,及按照要求求出小数的近似数。

2、过程与方法:在学生自主探索基础上,教师通过联系以前学过的相关知识,引导学生运用对比迁移的方法,全面学习整数改写小数及其近似数的知识。

3、情感态度及价值观:使学生全面认识到知识的前后连贯性、方法迁移性和多学科综合性,树立他们对知识的兴趣和自主探索的精神

二、教学重点

使学生掌握求整数改写小数及其近似数的方法。

三、教学难点

使学生全面准确熟练地应用“四舍五入”法求较大的整数改写小数及其近似数的方法。

四、学生分析

全班总共18个学生。虽然人数少,但是基础不是很好。整体而言,基础很平均。在教学中做到全面照顾每个学生比较容易。尤其是本课知识与上学期的整数改写和整数近似数有很密切的关系。学生以它们为基础,再加上已经学过的小数近似数的知识点,应该能很快进入状态和把握知识。

也有少数学生在数学推理上也较高的天赋。所以在课堂上对于占大部分的中等学生要加强提问和引导。

五、教学内容分析

本课知识有两个例题,74页的例题2和例题3。

例题2是已知地球与月球的距离是多少千米,要求把它们的距离用“万千米”这个单位表示出来。实质就是把一个较大的整数改写成用“万”单位的小数。在上学期其实已经学过把整数改写成用“万”单位的数。两者相比,本学期只是在上学期整数改写的基础上引入小数的知识。实际上只要把上学期整数改写成用“万”单位的数这个知识点与小数点的移动规律结合起来就可以了。

例题3是已知木星离太阳的距离是多少亿千米,要求把那个小数保留成一位小数。相对而言,比例题2要简单多了。在73页的例题1中,保留小数的知识已经学过。、所以在这里,我把两个例题在一起讲。同时也希望学生掌握把万或整亿的整数改写成用“万”或“亿”单位的小数,并且同时按照要求保留近似数这个常见而重要的题目类型。

六、教学媒体与资源的选择与应用

教学媒体:多媒体课件

教学资源选择:两个例题的动态图片及其题目

七、教学实施过程

共1课时

1、谈话导入

前面一节课我们通过课本52页的例题1学过求小数的近似数。上学期我们学过把一个整数改写成用万或亿作单位的数。今天我们来在它们的基础上学习一个新的知识点:求整数改写小数及其近似数。

2、回顾复习

(1)、课件出示四道题目,求它们省略万位后面的近似数,同时以“万”作单位。12953≈ 986534≈ 560890≈ 20114536≈(2)、指名学生口答这些题目

(3)、课件出示答案,验证学生的回答

3、创设情境,引入新知

(1)、课件出示教材第53页例2 地球与月球的距离是多少万千米?(图片显示两者的距离是384400千米)384400km=?万千米

(2)、从算理入手,理解改写方法。

①怎样改写呢?(组织学生自由讨论)

②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。(3)、木星离太阳的距离是多少亿千米(保留一位小数)(图片显示两者的距离是778330000千米)?

778330000km=?亿千米

(4)、从算理入手,理解改写方法。①怎样改写呢?(组织学生自由讨论)

②结论:改写时在亿位后面点上小数点,写上“亿”字,按照四舍五入的方法,取一位小数。

4、检测反馈

教材第53页第二个“做一做”。

八、教学评价与反思

这节课是在学生学习了整数的改写及其近似数的基础上进行教学的,目的是让学生学会将不是整万或整亿的整数改写成用万或亿作单位的小数,及按照要求求出小数的近似数。

在学习之前,我先让学生复习了求整数改写及其近似数的方法。在改写成小数并求近似数的过程中,重点把握了两个教学重难点,即:小数点加在哪里;表示近似数的时候,小数末尾的“0”必须保留,不能去掉等问题。

教学从回顾旧知识出发,让学生感受数学知识的前后连贯性和数学思维的方法迁移性。在创设情境环节,结合教科书的主题图,创设了地球与月球的距离情境,自然的引入新课,使学生体会到多学科综合性。在巩固环节,让学生说出把86992000台改写成用万作单位的小数,和把1223140000台改写成用亿作单位的保留两位的小数。

在求小数近似数的过程中,引导学生理解保留几位小数的含义。简单说一下保留一位小

数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自己回顾的,也让学生充分讨论了“四舍五入”该怎样舍和怎样入。最后引导学生总结出如何按照四舍五入法求小数近似数的方法。

虽然整数改写成用万或亿作单位的小数的方法与整数的改写成用万或亿作单位的整数的方法相似。而在知识点的教学中,我让学生主观发现,分析比较,迁移运用,概括出整数改写成用万或亿作单位的小数的方法,体现了教师的主导作用和学生的主体地位。但是一些基础差的学生在整数改写成用万或亿作单位的小数时却还是遇到了一些困难。最典型的就是他们不知道该把小数点打在哪里,在练习巩固时,加小数点总是有人出问题。数位的知识和小数点的移动规律都可以用来解决这个难题。但是许多学生基础不扎实,容易忘记学过的知识点。可能是数位太多而搞混了。也可能是小数的移动规律没有掌握好。

当时听很容易懂,但是过后做题总是经常出现问题。这说明了强化练习的重要性。如果没有练习,也就不能帮助中等水平的同学巩固知识,和提升有巨大潜力的学生了。

第四篇:求一个小数的近似数教学设计

求一个小数的近似数 陈慧

教材依据:人教版四年级下册P73求一个小数的近似数。

设计思路:按照“目标引导→自主探究→适时点拨→反馈纠正”的四个基本环节进行教学设计。

1、学习目标制定

只有明确了学习目标,才能引起学生对知识的重视,增强学习的目的性,减少盲目性,从而取得良好的学习效果。

在课的开始先进行整数求近似数复习,随后引入本课具体教学目标,发挥学生的潜能利用知识的迁移,达到教学目标。

2、自主探究

引导学生复习旧知,为新课的达标起到铺垫和迁移作用。

3、适时点拨

学生通过发现问题,独立思考,同桌交流,教师适时点拨,引导帮助学生解决问题,体会获取知识的喜悦。

4、反馈纠正

经过学生学习理解后做适当的检测,和反馈并作以及时的纠正。学习目标:

1、能够能运用学过的知识来解决遇到的新问题。

2、能够根据要求用“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

3、主动学习,主动参与,认真倾听老师的提问,学生的发言,争当课堂上学习小主人。

4、能够体会到保留的小数位数越多,精确程度越高。教学重点:

理解“保留一位小数”“精确到十分位”等要求的含义,能运用 已有的知识,根据要求用四舍五入法求一个小数的近似数。教学难点:

知道在表示小数的近似数时,末尾的0不能去掉;知道在求近似 数时,保留的小数位数越多结果越精确。教学准备:多媒体课件 学习过程:

一、复习旧知:

1.把下面各数省略万后面的尾数,求出它们的近似数。课件出示 987620

58562

31200 40032

998010

14995 2.说一说怎样用“四舍五入法”求一个数的近似数。

二、引入新课

教师:我们已经学过求一个整数的近似数,在现实生活中,有时也需要求出一个小数的近似数。这节课我们就来研究怎样求一个小数的近似数。(板书课题)

三、新授

1、师:同学们,你们对电子秤熟悉吗?现在老师请大家帮忙看看秤,我买了一些苹果应付多少钱?课件出示,我应该付多少钱?(8.953元)哦,可是售货员阿姨却说“请付8.95元”你知道为什么要把8.953元取近似数8.95元呢?讨论,了解在生活中在表示钱时最小只能到分,也就是保留两位小数,我们没有比分更小的货币,所以要用四舍五入法取近似数。其实在生活中,不光在表示钱的时候用到近似数,在很多方面也有用到,不信你看,出示例1主题图。

2、课件出示主题图:

(1)从图中你得到了哪些数学信息?要我们解决的问题是什么?(2)那0.984是怎样得到它的近似数0.98的呢? A、思考:要保留到哪个数位,观察哪个数位? B、把你的想法和同桌分享一下.C、说说你是怎么想的,请学生补充.(3)总结:你们刚才是利用什么方法求0.984保留两位小数的?(也就是说小数的近似数也可以用”四舍五入”法来求)你们太会学习了,能运用我们学过的知识来解决新的问题。课件出示求近似数的操作过程,便于学生直观接受。

师:既然大家这么聪明,老师还想考考大家,你们敢于挑战吗? 3、0.984保留一位小数是()0.984保留整数是()思考:0.984保留一位小数与保留整数时的结果是完全一样的吗?(数的大小相等,但表示的含义不同。)板书(保留两位小数 精确到百分位)

举例:写出自己的身高,王平老师的身高,及姚明的身高,并保留整数。保留整数时,表示精确到个位,这时老师我的身高1.54米≈2米,王老师身高1.78米≈2米,姚明身高2.26米≈2米,看起来,我、王老师和姚明一样高。事实是这样吗?板书(保留整数 精确到个位)

如果保留一位小数,表示精确到十分位,这时老师身高1.54米≈1.5米,王老师身高1.78米≈1.8米,姚明身高2.26米≈2.3米,可见,我、王老师和姚明的身高悬殊很大。那么保留整数与保留一位小数哪种取近似值更接近实际情况?板书(保留一位小数 精确到十分位)

小结:表示小数的近似数,小数位数越多结果越精确。并板书 什么叫精确?也就是小数位数越多越接近准确结果。

(总结出尽管两个数的大小相等,但表示的精确程度不同,它起到“占位和表示精确度”的作用,所以求近似数时,小数末尾的零不能去掉。)板书:表示近似数时,小数末尾的零不能去掉。

4、观察,比较一下我们在求小数的近似数时需要注意什么呢?

5、小结:引导学生讨论知道:求一个小数的近似数要注意两点: ①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;„„然后按“四舍五入法”决定是舍还是入。

②取近似值时,在保留的小数位里,小数末一位或几位是0的。0应当保留,不能丢掉。

四、练习巩固

1、填空

(1)求一个小数的近似数,要根据()法来保留小数的数位,保留整数时,表示精确到()位,保留一位小数时,精确到()位,保留两位小数时,精确到()位.....

(2)近似数的结果一般的说6.0比6精确,因为6.0精确到了()位,6精确到了()位,所以6.0的末尾中的”0”不能去掉。

2、课本74页做一做。

3、完成集体订正,纠错。

五、全课总结:

1、学了本节课,你有哪些收获?在哪方面还需努力?

2、打开课本课本73页,认真看一看本页内容,找出书中你认为需要掌握的知识用笔做个记号,然后大声地朗读出来。

六、板书设计

求一个小数的近似数——四舍五入法

保留整数 保留一位小数 保留两位小数 „ 精确到个位 精确到十分位 精确到百分位 „ 在表示近似数时,小数末尾的零不能去掉。保留的小数位数越多,结果越精确。教后反思:

本节教材是用一位小朋友的身高的近似数来引入新课的:豆豆的身高是0.984米,小芳说约是0.98米,小明说约1米,通过说法的不同引出争论。我先和孩子们一起复习了求整数近似数的方法——四舍五入法,为新课做好准备和铺垫。然后通过类比的方法,以生活中常遇到 的购买商品这项事情为例说明求小数近似数是一种生活必要。然后通过学生自己尝试,利用知识迁移,引出语句“保留整数、一位小数、两位小数……”,还可以说成“精确到什么位”、“省略哪一位后面的尾数”,使学生理解小数近似数的求法和整数没多大区别。

整节课下来,我觉得比较成功的地方有以下几点:第一,让学生知道为什么要学习求小数的近似数。理解求它是一种生活需要。第二,课堂上在让学生理解求近似数时,保留的位数越多求得的近似数越精确。处理的很好,重点是举得例子很形象直观,很容易让学生在生活中看到并接受,理解起来很容易,同时为学生明白教学难点在表示小数的近似数时,小数末尾的零不能去掉做了很好的诠释和论证。

同时本节课也存在不少问题,一、重点内容讲解过快,在引导学生理解保留几位小数的含义:保留一位小数就是精确到十位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数……我尽量让学生自己说出这些语句,部分学生没有消化,不理解保留与精确之间的关系。也致使练习中出现一些不必要的错误。

二、课堂环节不很紧密,课件和课堂环节衔接不紧密,有疏漏。

三、课堂气氛不活跃,未能很好的调动学生的积极性。

针对以上课堂中存在的问题,我深刻的意识到教师在课堂教学中的重要性,我必须高度重视自身存在的问题,努力学习,积极改进教学中的不足,在以后的的教学中寻求更好的进步和成长。

第五篇:《求一个小数的近似数》教学设计

《求一个小数的近似数》教学设计

小百户镇兴隆小学 徐 燕

【教材内容】

《求一个小数的近似数》是义务教育课程标准试验教科书数学(人教版)第八册第四单元《小数的意义和性质》第73页的内容。【教学目标】

1、使学生能够根据要求会用 “四舍五入”法保留一定的小数位数,求出一个小数的近似数。

2、使学生理解保留小数位数越多,精确程度越高。

3、培养学生的类推能力,增进学生对数学的理解能力和应用数学的信心。【教学重点】

用四舍五入法求小数的近似数。【教学难点】

明白要保留的小数数位里末尾的“0”不能去掉的原因。【教学用具】课件 【教学过程】

一、谈话导入

1、出示情景图

2、解决图中问题

3、出示主题图

4、问:豆豆的身高还可以怎样表示?

二、新授

(一)探究新知 探究一:0.984≈0.98 问:你是怎样想的,用的是什么方法? 教师引导归纳得出结论并板书。探究二:0.984≈1.0 说一说你的理由 师生共同解决

小组讨论:通过刚才的学习你发现了什么? 探究三:0.984≈1 比较探究二、三,说明小数末尾的“0”不能去掉。

(二)获取方法

1、比较三种表示方法有什么相同和不同。

2、归纳概括,完善板书

3、拓展研究:如果保留三位小数呢?

三、巩固练习

1.我会求下面小数的近似数

2、我能很快求出下面小数的近似数。

3、解决问题

四、课堂小结

五、作业布置

下载整数大小的比较和求一个整数的近似数 教学设计word格式文档
下载整数大小的比较和求一个整数的近似数 教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    求一个小数的近似数教学设计

    求一个小数的近似数---习题精选 2008-04-22 22:46 1. 填空 (1)保留( )位小数,表示精确到十分位. (2)保留三位小数,表示精确到( )位. (3)把1520000改写成“万”作单位的数是( ). (4)1亿=( ) (5)3.995≈......

    求一个小数的近似数教学设计

    教学内容教科书第73页的例题1。教学目标1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.2.能正确的按需要用“四舍五入法”保留一定的小数数位.3·使学生理解保......

    《求一个小数的近似数》教学设计(苏教版)

    《求一个小数的近似数》教学设计(苏教版) 《求一个小数的近似数》教学设计(苏教版)教学内容: 教材第126~127页例1、练一练,练习二十六第1~5题。教学目标:1.使学生能根据要求正确地......

    《求一个小数的近似数》教学反思

    《求一个小数的近似数》教学反思 《求一个小数的近似数》教学反思1 本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近......

    《求一个小数的近似数》教学分析

    《求一个小数的近似数》教学分析 (第73~77页) 这部分内容安排了两个例题:例1教学求一个小数的近似数;例2教学将不是整万或整亿的数改写成用“万”或“亿”作单位的数。 具体内容......

    《求一个小数的近似数》教学反思大全

    本节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方 法——四舍五入法,在求......

    亿以上数的读写 大小比较和求近似数练习

    亿以上数的读写 大小比较和求近似数的练习题 1、亿级含( )位、( )位,( )位和( )千亿。 2、表示个数的1,2,3,4,5,...都是( )数。一个物体也没有,用( )表 示。( )是最小的自然数。 3、( )个一亿是......

    比较数的大小,求近似数(参考教案二)(精选5篇)

    教学目标 (一)能正确地比较亿以内数的大小。 (二)能把整万的数改写成用万作单位的数。 (三)能正确地写出省略万后面尾数的近似数。 (四)培养学生比较、分析的思维......