科目:
数学
制作人:
时间
审核人
组长:
课题:分式方程
课时
教学目标:1、了解分式方程的概念,了解增根的概念。
2、会解可化为一元一次方程的分式方程。
3、会检验一个数是不是分式方程的增根。
教学方法:师友互助
教学过程
一、交流预习
5分钟学生活动的内容、要求及方法。
复习:1.什么叫做一元一次方程?
像这样,分母中含有未知数的方程叫做分式方程。
以前学过的分母中不含有未知数的方程叫做整式方程。
二.自主探究
下列方程中,哪些是分式方程?哪些整式方程.三.互助释疑
下面我们一起研究怎么样来解分式方程:
在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想(化归思想)。
方程两边同乘以x(x-6),得:
90(x-6)=60x
解得:
x=18
检验:当x=18时,检验:当x=18时,左边=右边
∴x=18是原分式方程的解。
增根:在去分母,将分式方程转化为整式方程的过程中出现的不适合于原方程的根.使分母值为零的根
产生的原因:分式方程两边同乘以一个零因式后,所得的根是整式方程的根,而不是分式方程的根.解分式方程时,去分母后所得整式方程的解有可能
使原方程的分母为0,所以分式方程的解必须检验.
检验方法:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则这个解就不是原分式方程的解
检验
例:解分式方程:
解:每项乘以最简公分母___________,得
X(x+2)-(x-1)(x+2)=3
解,得
x
=
检验:当x
=
时,(x-1)
(x+2)=0,∴x=1不是原分式方程的解,原分式方程无解.
四
巩固拓展
应用新知
解分式方程(注意验根)(学师注意指导学友验根)
五总结提高
你会吗?相信自己你能行!
解方程:
1.当m为何值时,方程
会产生增根
2.解关于x的方程
产生增根,则常数m的值等于()
(A)-2
(B)-1
(C)
(D)
3.若关于x的方程,有增根,求a的值。
会产生增根
则()
A、k=±2
B、k=2
C、k=-2
D、k为任何实数
4.若方程
5.若分式方程有增根,则增根是
6.解分式方程(注意验根)