第一篇:一道最能体现体现“数学是思维体操”相似三角形的证明题
龙源期刊网 http://.cn
一道最能体现体现“数学是思维体操”相似三角形的证明题
作者:李哲
来源:《科教创新》2014年第04期
中图分类号:G63 文献标识码:A 文章编号:1007-0745(2014)04-0144-01
摘要: 本文主要分析采矿工程实验室的教学问题,阐述虚拟现实技术的价值、涵义,探讨三维可视化技术的基本功能。
关键词:三维可视化 采矿工程 虚拟实验室
第二篇:数学是思维的“体操”
数学教学的思维
数学是思维的“体操”,可以锻炼学生的思维能力,使其不断地发展。思维品质主要包括思维的深刻性、灵活性、敏捷性和独创性等,教师在教学实践中从学生的实际出发,根据教学内容有目的有计划地培养学生优良的数学思维品质,是发展学生思维能力的重要手段。
一、沟通知识间的内在联系,培养思维的深刻性 思维的深刻性是指思维活动的抽象程度和逻辑水平,它集中表现在善于深入地思考问题,能从复杂的表面现象中,发现和抓住事物的规律和本质。因此沟通知识间的内在联系,是培养思维深刻性的主要手段。例如:学生学过分数的约分、通分后,思维往往停留在“基本法则”的浅层认识上,如果能适时揭示它们之间的本质联系,让学生悟出两者都是分数基本性质的应用,只不过所取的角度不同,前者取“同时缩小相同的倍数”,后者取“同时扩大相同的倍数”,就能把学生的认识引向概括,引向深层。
二、开拓思路,培养思维的灵活性
思维的灵活性指的是善于从不同角度和不同方面进行分析思考,学生解题的思路广、方法多、解法好就是思维灵活的表现。在数学教学中,教师注重启发学生多角度地思考问题,鼓励联想和提倡一题多解,有助于学生思维灵活性的培养。
例如,看到“男同学比女同学多34人”,就要启发学生联想到:女同学比男同学少34人;看到“红花比黄花少12朵”,就要启发学生联想到:黄花比红花多12朵„„通过这样的联想训练,培养学生多角度思考问题的能力。
如:在教学应用题“一台电视机价格是1500元,一台计算机的价格是一台电视机的5倍少40元”时,教师可问学生:你能根据这两个条件,提出哪些问题?学生通过观察和讨论,从不同侧面提出下面问题:
(1)一台计算机的价格是多少元?
(2)一台计算机比一台电视机贵多少元?(3)一台计算机和一台电视机共多少元?
学生用立体的眼光去观察事物,思维是多向的,有利于思维灵活性的培养。
学生思考问题常常是单一的,教师在关键时刻自然地把学生的思维向高层次引导,这就把学生的思维引向多向。在教学基本概念时,要设法让学生从不同的角度,不同的侧面来理解概念的实质。
如:教学倍数关系应用题“学校里开展兴趣小组活动,参加航模组的有5人,参加体育组的人数是航模组的3倍。参加体育组的有多少人?”教师可引导学生用画线段图的方法来理解题目中的倍数关系。当学生初步掌握线段图之后,可把学生的思维引向高层次,引导学生脱离线段图找出题中的对应关系:
航模组:5人—1份 体育组:□人—3份 学生可直接根据对应关系看出:体育组人数和航模组人数比,把航模组人数看作1份,体育组人数有这样的3份,求5的3倍是多少,用乘法计算。
学生学会了这种方法以后,在解答应用题:“学校里开展兴趣小组活动,参加歌舞组的有24人,参加手工组的有8人,参加歌舞组的人数是手工组的几倍?”时,就可让学生直接用找对应关系的方法来理解应用题中的倍数关系,从而解答应用题。概念初步形成后,在运用概念时要灵活,如果一味地让学生模仿性地运用,会使思维懒惰。教师要设计新颖灵活的题目,以便学生从不同角度去分析解决。
三、强化技能训练,培养思维的敏捷性
思维的敏捷性是指思维活动的速度,表现在数学学习中能善于抓住问题的本质,正确、合理、巧妙地运用概念、法则、性质、公式等基本知识,简缩运算环节和推理过程,使运算既准又快。因此,强化技能训练是培养思维敏捷性的主要手段。
例1:(9+6)+(4+1),教师可根据加法的交换律,让学生用凑十法比较简便,计算过程是:
(9+6)+(4+1)=(9+1)+(6+4)=10+10=20 例2:(20+7)+(40+5),可让学生用整十数与整十数相加,一位数与一位数相加,计算比较简便。计算过程是:
(20+7)+(40+5)=(20+40)+(7+5)=60+12=72 例3:(50+9)-(20+7),可让学生用整十数和整十数相减,一位数和一位数相减比较简便。计算过程是:
(50+9)-(20+7)=(50-20)+(9-7)=30+2=32 随着学生运算技能的形成,计算过程的中间环节,随着练习而逐步压缩,培养和训练学生从详尽的思维,逐步过渡到压缩省略的思维。这样可以使学生一看到题目,通过感知就能很快地算出得数。
如:20+1-7-3,可让学生根据和减一个数的方法计算比较简便。计算过程是:
(20+1)-(7+3)=(20+1)-10=21-10=11 强化技能训练一定要在学生切实理解运算法则、定律、性质等基础上,要求学生熟记一些常用的数据,平时坚持适量的口算和应用题练习,通过视算、听算、口答、速算比赛等,采用“定时间比做题数量”、“定做题数量比完成时间”的训练方式,强化学生的基本技能,从而达到培养思维敏捷性的目的。
四、提倡求异思维,探究求新,培养思维的独创性
思维的独创性是智力活动的独立创造水平。在教学中要提倡求异思维,鼓励学生探究求新,激发学生在头脑中对已有知识进行“再加工”,以“调整、改组和充实”,创造性地寻找独特简捷的解法,提出各种“别出心裁”的方法,这些都能促进学生思维独创性的形成。
例如,解答应用题:某厂原计划40天生产工具1600件,实际每天比原计划多生产25%,实际几天完成?教师启发学生从不同角度、不同思路进行思考,尝试有无更简捷的算法。学生要冲破解应用题,必须用上每一个条件的常规,运用工程问题的思考方法,把工作总量看作单位“1”,甩开1600这个实际数字,列式为1÷[1÷40×(1+25%)],也有的学生把原计划工作效率看作单位“1”,列式为:1×40÷(1+25%),更有学生提出40× 4/5的最佳方案。
在四则运算教学中,提倡新颖的解题方法。除要求学生能掌握一般法则进行计算外,还可启发学生合理想象,用新颖独特的方法进行解题,使参加运算的数形变值不变,使运算简便。如:
99+68=99+1+67=100+67=1679+8+7+6+5=7+2+7+1+7+7-1+7-2=7×5=35 这样训练进一步发挥了学生的创造才能,调动了他们学习的积极性和主动性,使所学知识理解得更深刻,独创性思维品质也得以培养和发展。
总之,数学是一门培养思维能力的基础课。思维的训练不是靠灌输,而是靠启发,引导和点拨。教师应不断分析、不断总结、不断改进自己的教学工作,在改革中,探寻开展思维训练的方法和途径。
第三篇:七年级数学 三角形 证明题
三角形与平行线相交线的套用
1.已知:四边形ABCD中, AC、BD交于O点, AO=OC , BA⊥AC , DC⊥AC.垂足分别为A , C.求证:AD=BC
多次证明三角形全等得出角或边相等
2.(1)已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,∠1=∠2,求证:∠B=∠C
A B(2)已知:如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。
F
E
可用多种方法证明 DC 3.已知:如图,AD=AE,AB=AC,BD、CE相交于O.求证:OD=OE.
通过全等三角形得出角相等利用等量代换或补角余角关系得出结论
4.已知:如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC。
A
E
B
DC如果直接证明线段或角相等比较困难时,可以将线段、角扩大(或缩小)或将线段、角分解为几部分,再分别证明扩大(或缩小)的量相等;或证明被分成的几部分对应相等,这是证明线段、角相等的一个常用手段。
5.已知:如图,AB=DE,BC=EF,CD=FA,∠A= ∠D。求证:∠B= ∠E。
通过高构造全等三角形
6.(1)已知:如图,△ABC中,D是BC的中点,∠1=∠2,求证:AB=AC。
(2)如图,△ABC中,AD是∠A的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°。求证:DE=DF。
BAEFD
通过添加辅助线构造全等三角形直接证明线段(角)相等
7.已知:如图AB=AD,CB=CD,(1)求证:∠B=∠D.
(2)若AE=AF
试猜想CE与CF的大小关系并证明.
通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。
8.如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF。
求证:AC=BF。
通过构造相等的直线,运用三角形全等得出两直线相等,再通过等量代换得出结论。
9、如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC交BC于D。求证:AB+BD=AC。
A
BDC
“倍长中线法”添加辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法
(1)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF交BC于点D.求证:DE=DF. 求证:BE=CF.
(2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC于点D,且D为EF的中点.
第四篇:九年级数学《相似三角形》说课稿
【小编寄语】查字典数学网小编给大家整理了九年级数学《相似三角形》说课稿,希望能给大家带来帮助!
相似三角形说课稿
今天,我的说课将分三大部分进行:
一、说教材;
二、说教学策略;
三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3.教学重点、难点
立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。
教学重点:相似三角形、相似多边形的性质及其应用
教学难点:①相似三角形性质的应用;
②促进学生有条理的思考及有条理的表达。
4.学情分析
从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。
对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。
大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。
5.教学准备
教师:直尺、多媒体课件
学生:必要的学习用具
二、说教学策略
从设计的指导思想、教学方法、学习方法三方面阐述
新课程标准指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现学生主体教师主导的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。
采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。
有一位教育家说过:教给学生良好的学习方法比直接教给学生知识更重要。本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由被动学会变成主动会学。
三、说教学程序
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?
生:已经研究了相似三角形的定义、判别条件。
师:那么我们今天该研究什么了?
生:相似三角形的性质。
设计意图:
从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。
生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?
设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:
给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?
生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ABC∽DEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ABC的周长(学生只能用相似三角形对应边成比例求出ABC的三边长,然后求其周长)
(2)如果DEF的周长为20,则ABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ABC∽DEF,相似比为k:1,且DEF三边长分别用d、e、f表示,求ABC与DEF的周长之比。
结论:相似三角形的周长之比等于相似比。
情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?
生:面积比问题。
师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到相似三角形的对应高之比等于相似比的结论。进而解决相似三角形的面积比等于相似比的平方的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)
拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略转化为三角形来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比;
相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;
相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。回归生活一:
师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的相似形你还能解决吗?
回归生活二:(以师生聊天的方式进行)
其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?
生:相似比的立方。
设计意图:新课程标准指出数学教学活动要建立在学生已有生活经验的基础上---;教育心理学认为:源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果;于新华老师在一些教研活动中曾经说过:源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。
而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。
(四)操作应用,形成技能
课内检测:
1.已知两上三角形相似,请完成下面表格:
相似比 2
对应高之比 0.5
周长之比 3 k
面积之比 100
2.在一张比例尺为1:2000的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。
设计意图:落实双基,形成技能
(五)习题拓展,发展能力
已知,如图,ABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。
(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?
(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?
答: 最大值,最小值(填有或没有)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。
(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:
①当点P为AB中点时,矩形PMNQ的面积最大;
②当PM=PQ时,矩形PMNQ的面积最大。
你认为哪一个猜想较为合理?为什么?
(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。
第五篇:八年级数学全等三角形证明题
中考网
第十三章全等三角形测试卷
(测试时间:90分钟总分:100分)
班级姓名得分
一、选择题(本大题共10题;每小题2分,共20分)
1. 对于△ABC与△DEF,已知∠A=∠D,∠B=∠E,则下列条件①AB=DE;②AC=DF;
③BC=DF;④AB=EF中,能判定它们全等的有()
A.①②B.①③C.②③D.③④
2. 下列说法正确的是()
A.面积相等的两个三角形全等
B.周长相等的两个三角形全等
C.三个角对应相等的两个三角形全等
D.能够完全重合的两个三角形全等
3. 下列数据能确定形状和大小的是()
A.AB=4,BC=5,∠C=60°B.AB=6,∠C=60°,∠B=70°
C.AB=4,BC=5,CA=10D.∠C=60°,∠B=70°,∠A=50°
4. 在△ABC和△DEF中,∠A=∠D,AB = DE,添加下列哪一个条件,依然不能证明△
ABC≌△DEF()
A.AC = DFB.BC = EFC.∠B=∠ED.∠C=∠F
5. OP是∠AOB的平分线,则下列说法正确的是()
A.射线OP上的点与OA,OB上任意一点的距离相等
B.射线OP上的点与边OA,OB的距离相等
C.射线OP上的点与OA上各点的距离相等
D.射线OP上的点与OB上各点的距离相等 D 6. 如图,∠1=∠2,∠E=∠A,EC=DA,则△ABD≌△EBC
时,运用的判定定理是()A.SSS
C B.ASA B C.AAS
(第6题)D.SAS
7. 如图,若线段AB,CD交于点O,且AB、CD互相平分,则下列结论错误的是()D A.AD=BC
B.∠C=∠D
C.AD∥BC
D.OB=OC
8. 如图,AE⊥BD于E,CF⊥BD于F,AB = CD,AE = CF,则图中全等三角形共有()
A.1对
B.2对
C.3对
D.4对 B(第7题)(第8题)D中考网
9. 如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△
ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的()
A.只有①
B.只有②
C.只有③
D.有①和②和③
B 10.如图,DE⊥BC,BE=EC,且AB=5,AC=8,(第9题)则△ABD的周长为()
A.
21B.18C.1
3C E D.9
(第10题)
二、填空题(本大题共6小题;每小题2分,共12分)
11.如图,除公共边AB外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使△ABC与△ABD全等:
(1),(ASA);(2),∠3=∠4(AAS). 12.如图,AD是△ABC的中线,延长AD到E,使DE=AD,连结BE,则有
△ACD≌△。
13.如图,△ABC≌△ADE,此时∠.
A CBC B ED A(第11题)
(第13题)(第12题)
14.如图,AB⊥AC,垂足为A,CD⊥AC,垂足为C,DE⊥BC,且AB=CE,若BC=5cm,则DE的长为cm. 15.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE=cm.B
C C A C E(第15题)(第14题)(第16题)
16.如图,在△ABD和△ACE中,有下列论断:①AB=AC;②AD=AE;③∠B=∠C;④
BD=CE.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题:。
三、解答题(本大题5小题;共68分)17.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB.∠MON=50°,∠OPC=30°.
求∠PCA的度数.
A
B
18.已知:如图,AB与CD相交于点O,∠ACO=∠BDO,OC=OD,CE是△ACO的角平分
线,请你先作△ODB的角平分线DF(保留痕迹)再证明CE=DF.
19.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证BM=CN.
MB
D
N
20.已知:如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连结EG.(1)求证BG=CF;
(2)试猜想BE+CF与EF的大小关系,并加以证明.
21.如图,图(1)中等腰△ABC与等腰△DEC共点于C,且∠BCA=∠ECD,连结BE,AD,若BC=AC,EC=DC.求证BE=AD;若将等腰△EDC绕点C旋转至图(2)(3)(4)情况时,其余条件不变,BE与AD还相等吗?为什么?
A
DB
A
A
E
E
B
(1)
D
DC
B
D
(2)(3)
(4)
八年级(上)《全等三角形》试卷讲评课教案
九华初级中学李海燕
教学目标:
1.通过讲评,进一步巩固全等三角形的相关知识点。
2.通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。教学重点:
第16,19,20题的错因剖析与矫正。教学过程:
一、考试情况分析:
班级均分:82.1 分最高分:100 分 100分的同学,全班公示,鼓掌祝贺。分发试卷。
二、学生小组总结试卷填空和选择两块解题中错误原因和解题感受,看看哪些小组总结得比较好。
学生用投影展示自己的所思所想。
三、重点评讲解答题的19、20题
1、学生小组交流
2、学生据黑板图形讲解
3、教师点评
四、学生自我完善考卷
五、总结课堂,教师质疑
六、学生课堂训练
教案说明:
本张试卷学生考试情况较好,典型错误不多,且书写态度端正,思维过程表达清晰,可以看出学生对全等三角形的性质、判定掌握到位,如17、19有的学生能灵活运用角平分线性质及垂直平分线性质进行解答,方法比较简便。针对考试情况,我在进行教学设计时让学生发现自己在解题中的失误或错误,重点评讲了试题中的3、19、20等题。本课主要采用由学生说题的方法进行评讲,心理学研究表明,人在学习活动过程中,听懂不一定做的出,语
言表述则是思维活动的最高境界,语言更能训练思维的逻辑性和严密性。学生对解题过程或者思维过程口头能表达清楚才是真的理解这道题。总之,“学生说题”能转变学生的学习方式,建设开放而有活力的课堂,符合有效课堂的特征,是高参与的课堂、高认知的课堂、高情意的课堂。课堂练习是针对学生在考卷中表现出的薄弱之处设计的,在学生对考卷进行评讲后进行练习,能有效帮助学生进一步掌握解题方法。
课堂针对性练习
班级姓名组别
1、如图,在△AEB和△AFC中,有下列论断:①∠EAC=∠FAB;②AB=AC;③BE=CF;④AE=AF.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题.2、(1)已知:如图,在△ABC中,∠BAC=90°,AB=AC,直线AF交BC于F,BD⊥AF于
D,CE⊥AF于E.求证:DE=BD-EC
(2)对于(1)中的条件改为:直线AF在△ABC形外,与BC的延长线相交于F,其他条件不变,上述结论仍成立吗?(请画出图形)若成立,请证明;若不成立,请写出正确的等式,并证明.