第 3讲 不等式问题的题型与方法

时间:2019-05-14 11:43:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第 3讲 不等式问题的题型与方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第 3讲 不等式问题的题型与方法》。

第一篇:第 3讲 不等式问题的题型与方法

高三数学第二轮复习第3讲

不等式问题的题型与方法

一、考试内容

不等式,不等式的基本性质,不等式的证明,不等式的解法,含绝对值不等式

二、考试要求

1.理解不等式的性质及其证明。

2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

3.掌握分析法、综合法、比较法证明简单的不等式。4.掌握简单不等式的解法。

5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。

三、复习目标

1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;

2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;

3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;

4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;

5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.

6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.

四、双基透视

1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰. 2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.

3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感 悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.

4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值).

5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.

6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.

7.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。8.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:10审题,20建立不等式模型,30解数学问题,40作答。

五、注意事项

1.解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解。

2.解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。

3.不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。如运用放缩法证明不等式时要注意调整放缩的度。

4.根据题目结构特点,执果索因,往往是有效的思维方法。

六、范例分析

b)∈M,且对M中的其它元素(c,d),总有c≥a,则a=____.

分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M中的其它元素(c,d),总有c≥a”?M中的元素又有什么特点? 解:依题可知,本题等价于求函数x=f(y)=(y+3)·|y-1|+(y+3)

(2)当1≤y≤3时,所以当y=1时,xmin=4.

说明:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示其数学实质.即求集合M中的元素满足关系式

2a2a0 例2.解关于x的不等式: xxa9分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。本题的关键不是对参数a进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。

xaxa解:当xa时,不等式可转化为 即2229xxa2a9x9ax2a0317axa

bxaxa 当xa时不等式可化为即222ax(ax)2a9x9ax2a0a2ax或xa332a317a故不等式的解集为(,,a。

336例3. 己知三个不等式:①2x45x ②

x2

1③2x2mx10 2x3x2(1)若同时满足①、②的x值也满足③,求m的取值范围;

(2)若满足的③x值至少满足①和②中的一个,求m的取值范围。

分析:本例主要综合复习整式、分式不等式和含绝对值不等的解法,以及数形结合思想,解本题的关键弄清同时满足①、②的x值的满足③的充要条件是:③对应的方程的两根分别在,0和3,)内。不等式和与之对应的方程及函数图象有着密不可分的内在联系,在解决问题的过程中,要适时地联系它们之间的内在关系。解:记①的解集为A,②的解集为B,③的解集为C。解①得A=(-1,3);解②得B=0,1)(2,4,AB0,1)(2,3)

(1)因同时满足①、②的x值也满足③,ABC

设f(x)2x2mx1,由f(x)的图象可知:方程的小根小于0,大根大于或等于3时,f(0)01017即m

3f(3)03m170(2)因满足③的x值至少满足①和②中的一个,CAB,而AB(1,4因 此C(1,4方程2x2mx10小根大于或等于-1,大根小于或等于4,因而 即可满足ABf(1)1m031f(4)4m310,解之得m1 4m144说明:同时满足①②的x值满足③的充要条件是:③对应的方程2x+mx-1=0的两根分别在(-∞,0)和[3,+∞)内,因此有f(0)<0且f(3)≤0,否则不能对A∩B中的所有x值满足条件.不等式和与之对应的方程及图象是有着密不可分的内在联系的,在解决问题的过程中,要适时地联系它们之间的内在关系.

例4.已知对于自然数a,存在一个以a为首项系数的整系数二次三项式,它有两个小于1的正根,求证:a≥5.

分析:回忆二次函数的几种特殊形式.设f(x)=ax+bx+c(a≠0).①

顶点式.f(x)=a(x-x0)+f(x0)(a≠0).这里(x0,f(x0))是二次函数的顶点,x0=))、(x2,f(x2))、(x3,f(x3))是二次函数图象上的不同三点,则系数a,b,c可由 222

证明:设二次三项式为:f(x)=a(x-x1)(x-x2),a∈N. 依题意知:0<x1<1,0<x2<1,且x1≠x2.于是有

f(0)>0,f(1)>0.

又f(x)=ax-a(x1+x2)x+ax1x2为整系数二次三项式,所以f(0)=ax1x2、f(1)=a·(1-x1)(1-x2)为正整数.故f(0)≥1,f(1)≥1. 2从而

f(0)·f(1)≥1.

① 另一方面,且由x1≠x2知等号不同时成立,所以

由①、②得,a2>16.又a∈N,所以a≥5.

说明:二次函数是一类被广泛应用的函数,用它构造的不等式证明问题,往往比较灵活.根据题设条件恰当选择二次函数的表达形式,是解决这类问题的关键.

例5.设等差数列{an}的首项a1>0且Sm=Sn(m≠n).问:它的前多少项的和最大? 分析:要求前n项和的最大值,首先要分析此数列是递增数列还是递减数列. 解:设等差数列{an}的公差为d,由Sm=Sn得

ak≥0,且ak+1<0.

(k∈N).

说明:诸多数学问题可归结为解某一不等式(组).正确列出不等式(组),并分析其解在具体问题的意义,是得到合理结论的关键.

例6.若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围. 分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.

解:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax2+bx.于是

解法一(利用基本不等式的性质)不等式组(Ⅰ)变形得

(Ⅰ)所以f(-2)的取值范围是[6,10]. 解法二(数形结合)

建立直角坐标系aob,作出不等式组(Ⅰ)所表示的区域,如图6中的阴影部分.因为f(-2)=4a-2b,所以4a-2b-f(-2)=0表示斜率为2的直线系.如图6,当直线4a-2b-f(-2)=0过点A(2,1),B(3,1)时,分别取得f(-2)的最小值6,最大值10.即f(-2)的取值范围是:6≤f(-2)≤10.

解法三(利用方程的思想)

又f(-2)=4a-2b=3f(-1)+f(1),而

1≤f(-1)≤2,3≤f(1)≤4,① 所以

3≤3f(-1)≤6.

② ①+②得4≤3f(-1)+f(1)≤10,即6≤f(-2)≤10.

说明:(1)在解不等式时,要求作同解变形.要避免出现以下一种错解:

2b,8≤4a≤12,-3≤-2b≤-1,所以 5≤f(-2)≤11.

(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.

例7.(2002 江苏)己知a0,函数f(x)axbx2,(1)当b0时,若对任意xR都有fx1,证明:a2b;

时,证明:对任意x[0,1],|f(x)|1的充要条件是b1a2b;(2)当b1时,(3)当0b1讨论:对任意x[0,1],|f(x)|1的充要条件。

a2a2)证明:(1)依题意,对任意xR,都有f(x)1.f(x)b(x 2b4baa2f()1,a0,b0a2b.2b4b(2)充分性:b1,ab1,对任意x0,1,可推出:axbx2b(xx2)x

x1,即axbx21;又b1,a2b,对任意x0,1,可知

11axbx22bxbx2(2bxbx2)max2bb()21,即axbx21bb1f(x)1

必要性:对任意x0,1,f(x)1,f(x)1,f(1)1

11即ab1ab1;又b101,由fx1知f1bb即a11,a2b,故b1a2b b2综上,对任意x0,1,f(x)1的充要条件是b1a2b

(3)a0,0b1时,对任意x0,1,f(x)axbx即f(x)1;又由f(x)1知f(1)1,即ab1,即ab1

b1

b12(b1)2) 而当ab1时,f(x)axbx(b1)xbxb(x 2b4bb10b1,12b在0,1上,y(b1)xbx2是增函数,故在x1时取得最大值1f(x)1

22当a0,0b1时,对任意x0,1,f(x)1的充要条件是ab1

例8.若a>0,b>0,a3+b3=2.求证a+b≤2,ab≤1.

分析:由条件a3+b3=2及待证的结论a+b≤2的结构入手,联想它们之间的内在联系,不妨用作差比较法或均值不等式或构造方程等等方法,架起沟通二者的“桥梁”. 证法一

(作差比较法)因为a>0,b>0,a3+b3=2,所以

(a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6 =3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0,即

(a+b)3≤23.

证法二

(平均值不等式—综合法)因为a>0,b>0,a3+b3=2,所以

所以a+b≤2,ab≤1.

说明:充分发挥“1”的作用,使其证明路径显得格外简捷、漂亮. 证法三

(构造方程)设a,b为方程x2-mx+n=0的两根.则

因为a>0,b>0,所以m>0,n>0且Δ=m2-4n≥0.①

因此2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m[m2-3n],所以

所以a+b≤2.

由2≥m得4≥m2,又m2≥4n,所以4≥4n,即n≤1.所以 ab≤1.

说明:认真观察不等式的结构,从中发现与已学知识的内在联系,就能较顺利地找到解决问题的切入点. 证法四

(恰当的配凑)因为a>0,b>0,a3+b3=2,所以

2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b),于是有6≥3ab(a+b),从而

8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,所以a+b≤2.(以下略)

即a+b≤2.(以下略)证法六

(反证法)假设a+b>2,则

a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>2(22-3ab).

因为a3+b3=2,所以2>2(4-3ab),因此ab>1.

① 另一方面,2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=(a+b)·ab>2ab,所以ab<1.

② 于是①与②矛盾,故a+b≤2.(以下略)说明:此题用了六种不同的方法证明,这几种证法都是证明不等式的常用方法.

例9.设函数f(x)=ax2+bx+c的图象与两直线y=x,y=-x,均不相

分析:因为x∈R,故|f(x)|的最小值若存在,则最小值由顶点确定,故设f(x)=a(x-x0)2+f(x0). 证明:由题意知,a≠0.设f(x)=a(x-x0)2+f(x0),则又二次方程ax2+bx+c=±x无实根,故

Δ1=(b+1)2-4ac<0,Δ2=(b-1)2-4ac<0.

所以(b+1)2+(b-1)2-8ac<0,即2b2+2-8ac<0,即

b2-4ac<-1,所以|b2-4ac|>1.

说明:从上述几个例子可以看出,在证明与二次函数有关的不等式问题时,如果针对题设条件,合理采取二次函数的不同形式,那么我们就找到了一种有效的证明途径.

例10.(2002理)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?

解:设2001年末的汽车保有量为a1,以后每年末的汽车保有量依次为a2,a3....,每年新增汽车x万辆。

由题意得an10.94anx即an1

xx0.94(an)0.060.06xx)0.94n10.060.0630令an60,解得x(30)0.06n110.94上式右端是关于n的减函数,且当n时,上式趋于3.6an(30故要对一切自然数n满足an60,应有x3.6,即每年新增汽车不应超过3.6万辆

例11.已知奇函数f(x)在(,0)(0,)上有定义,在(0,)上是增函数,f(1)0,又知函数g()sin2mcos2m,[0,],集合

2Mm恒有g()0,Nm恒有f(g())0,求MN 分析:这是一道比较综合的问题,考查很多函数知识,通过恰当换元,使问题转化为二次函数在闭区间上的最值问题。

解奇数函数f(x)在(0,)上是增函数,f(x)在(,0)上也是增函数。g()0g()0又由f(1)0得f(1)f(1)0满足的条件是f(g()0f(1)g()1 即g()(1(0,]),即sin2mcos2m1,2也即cos2mcor2m20 令tcos,则t[0,1],又设(t)t2mt2m2,0t1

1]内的最大值小于零

要使(t)0,必须使(t)在[0,m0m01 当0即m0时,(t)max(0)2m2,解不等式组知m 2m202mm28m802当01即0m2时,(t)max,24 0m22解不等式组m8m80得422m24m2m03当1即m2时,(t)maxm1,解不等式组

2m10得m2综上:M Nmm422

例12.如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状。

(1)若最大拱高h为6米,则隧道设计的拱宽l是多少?(2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个椭圆形隧道的土方工程最小?

lh,柱体体积为:底面积乘4以高,21.414,72.646本题结果均精确到0.1(半个椭圆的面积公式为s=米)

分析:本题为2003年上海高考题,考查运用几何、不等式等解决应用题的能力及运算能力。解:1)建立如图所示直角坐标系,则P(11,4.5)

x2y2椭圆方程为:221

ab将b=h=6与点P坐标代入椭圆方程得

447887,此时l2a33.3故隧道拱宽约为33.3米 77x2y21124.522)由椭圆方程221得221

abab1124.522114.522,ab99ababab991124.521slh,当s最小时有22

422ab292a112,b此时l2a31.1,hb6.42a故当拱高约为6.4米,拱宽约为31.1米时,土方工程量最小.例13.已知n∈N,n>1.求证

分析:虽然待证不等式是关于自然数的命题,但不一定选用数学归纳法,观其“形”,它具有较好规律,因此不妨采用构造数列的方法进行解.

说明:因为数列是特殊的函数,所以可以因问题的数学结构,利用函数的思想解决.

x22x2例14.已知函数f(x)

x1fx1nfxn12n2.(2)设x是正实数,求证:

分析:本例主要复习函数、不等式的基础知识,绝对值不等式及函数不等式的证明技巧。基本思路先将函数不等式转化为代数不等式,利用绝对值不等式的性质及函数的性质。证明(1)再利用二项展开式及基本不等式的证明(2)。(1)设〈0x1,0t1,求证:txtxftx1(x1)211f(tx1)tx 证明:(1)f(x)x1tx111f(tx1)txtx2tx2,当且仅当tx1时,上式取等号。

txtxtx0x1,0t1tx1,f(tx1)2

s(txtx2(t2x2)2t2x2(txtx)22(t2x2)2t2x2 2当tx时,s4t24;当tx时s4x24

txtx2f(tx1)即txtxf(tx1)

(2)n1时,结论显然成立

当n2时,f(x1)nf(xn1)(x1)n(xnx

111n112n2)CxCx.....nnxnxx212

xn4111112n1Cn(xn2n2)Cn(xn4n4)....Cn(xn2n2) 2xxxn1112n1122(CnCn...Cn)CnCn...Cn2n2 2Cnn2x21xn2Cnn1x1xn1Cnxn2Cnxn4......Cn12n21Cnn11xn2



例15.(2001年全国理)己知i,m,n是正整数,且1imn(1)证明:niAmmiAn(2)证明:1mn1n miiAmm1m2mi1证明:(1)对于1im,有Amm.(m1)......(mi1),mi......mmmmmiAnnn1n2ni1同理i......由于mn,对整数k1,2,......,i1,有

nnnnniiinkmkAnAmi,ii即miAnniAm nmnmii(2)由二项式定理有(1m)iinmCii0inin,(1n)niCm,由(1)知miAnniAm

miiii0mAAiii(1imn),而Cnn,CmmmicnniCm(1imn)

i!i!因此mCnniCm,又moCnnoCm1,mCnnCmmn,miCn0 iiioo11ii2i2niimii0i0mm(min)mCnniCm即(1m)n(1n)m。

七、强化训练

1.已知非负实数x,y满足2x3y80且3x2y70,则xy的最大值是()

A.78

B.

C.

2D. 3 33x2.已知命题p:函数ylog0.5(x22xa)的值域为R,命题q:函数y(52a)

是减函数。若p或q为真命题,p且q为假命题,则实数a的取值范围是

()

A.a≤1 B.a<2 C.1

(1)[-1,2];(2)(-∞,-1]∪[2,+∞);(3){2};(4)[-1,+∞). 5. 解关于x的不等式1a2xaax(a0且a1)6.(2002北京文)数列xn由下列条件确定:x1a0,xn1(1)证明:对于n2,总有xn21a x,nNn2xna,(2)证明:对于n2,总有xnxn1.

7.设P=(log2x)+(t-2)log2x-t+1,若t在区间[-2,2]上变动时,P恒为正值,试求x的变化范围.

8.已知数列anbn中,的通项为an,前n项和为sn,且an是sn与2的等差中项,数列b1=1,点P(bn,bn+1)在直线x-y+2=0上。Ⅰ)求数列an、bn的通项公式an,bn Ⅱ)设bn的前n项和为Bn, 试比较

111...与2的大小。B1B2BnⅢ)设Tn=bb1b2...n,若对一切正整数n,Tnc(cZ)恒成立,求c的最小值 a1a2an

八、参考答案

1.解:画出图象,由线性规划知识可得,选D 2.解:命题p为真时,即真数部分能够取到大于零的所有实数,故二次函数x2xa的判别式44a0,从而a1;命题q为真时,52a1a2。

若p或q为真命题,p且q为假命题,故p和q中只有一个是真命题,一个是假命题。

若p为真,q为假时,无解;若p为假,q为真时,结果为1

(1)当a1时,由图1知不等式的解集为xxa或1x

3(2)当1a3时,由图2知不等式的解集为xx1或ax3

2 14(3)当a3时,由图3知不等式的解集为xx1或3xa

4.分析:方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互交通.

解(1)

由题意可知,a>0且-1,2是方程ax2+bx+a2-1≤0的根,所以



(3)由题意知,2是方程ax2+bx+a2-1=0的根,所以

4a+2b+a2-1=0.

① 又{2}是不等式ax2+bx+a2-1≤0的解集,所以

(4)由题意知,a=0.b<0,且-1是方程bx+a2-1=0的根,即-b+a2-1=0,所以

a=0,b=-1.

说明:二次函数与一元二次方程、一元二次不等式之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间相互联系相互渗透,并在一定条件下相互转换。

5.分析:在不等式的求解中,换元法和图解法是常用的技巧,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,数形结合,则可将不等式的解化归为直观,形象的图象关系,对含参数的不等式,运用图解法,还可以使得分类标准更加明晰。解:设ta,原不等式化为1t2at(t0)设y11t2(t0),y2at,在同一坐标系中作出两函数图象 xy1y2,故(1)当0a1时,0t1,即0ax1x0,)

当1a2时,如右图,解方程1tat得t1,2(2)222a2a2222

 a2aa2a22aa2atx(loga,loga)222215(3)当a2时,原不等式的解集为φ

综上所述,当a(0,1)时,解集为0,);当a(1,2)时,解集为

22a222a2(loga,loga);当a22

6.证明:(1)x1a0及xn1(xn2,)时,解集为φ。

12a1aa)知xn0,从而xn1(xn)xna(nN)xn2xnxn当n2时xna成立

(2)当n2时,xn2a0,xn11a1a(xn),xn1xn(xn)2xn2xn1axn=0.n2时,xnxn1成立 2xn7.分析:要求x的变化范围,显然要依题设条件寻找含x的不等式(组),这就需要认真思考条件中“t在区间[-2,2]上变动时,P恒为正值.”的含义.你是怎样理解的?如果继续思考有困难、请换一个角度去思考.在所给数学结构中,右式含两个字母x、t,t是在给定区间内变化的,而求的是x的取值范围,能想到什么?

解:设P=f(t)=(log2x-1)t+log22x-2log2x+1.因为 P=f(t)在top直角坐标系内是一直线,所以t在区间[-2,2]上变动时,P恒为正值的充要条件

解得log2x>3或log2x<-1.

说明:改变看问题的角度,构造关于t的一次函数,灵活运用函数的思想,使难解的问题转化为熟悉的问题.

8.分析:本题主要复习数列通项、求和及不等式的有关知识。略解:Ⅰ)an2,bn2n1 n Ⅱ)Bn=1+3+5+„+(2n-1)=n2

1111111B...222...21B2Bn123n 1112123..1(n1).n1(112)(1213)...(11n1n)21n2111B...21B2Bn1352n1 Ⅲ)Tn= 22222...2n①

12T1352n1n222324...2n1② ①-②得12T111222n1n2222323...2n2n1

T12n1n32n22n3

又T13473742222324162 满足条件Tnc的最小值整数c3。

第二篇:高三数学教案:第3讲___不等式问题的题型与方法

学而思教育·学习改变命运 思考成就未来!

高考网www.xiexiebang.comxn1n11xCnx2n21x2.....学而思教育·学习改变命运 思考成就未来!

高考网www.xiexiebang.comn2x21xn2Cnn1x1xn1Cnx1n2Cnx2n4......Cnn21xn4Cnn11xn2

11n21112n1n4n2C(x)C(x)....C(x)nnnn2n4n22xxx122(C1nCn...Cn2n1)CnCn...Cn12n122

n

例15.(2001年全国理)己知i,m,n是正整数,且(1)证明:niAmmiAn(2)证明:1m1n n1imn

iim证明:(1)对于1im,有Amm.(m1)......(mi1),同理AnniiiAmmiimmm1mm2m......mi1m

nn1n2ni1......由于mn,对整数k1,2,......,i1,有 nnnnm,AnniinknmkAmmiiiii即mAnnAm

nni(2)由二项式定理有(1m)(1imn),而CnmiimCi0iinm,(1n)iiminCi0iiimii,由(1)知mAnnAm

iiAni!ii,CmoiAmi!imcnnCm(1imn)

o11i因此mCni2nimi2iiooinCm,又mCnnCm1,mCnnCmmn,mCn0

mi(min)mCnnCm即(1m)(1n)。

i0i0iinm

七、强化训练

1.已知非负实数x,y满足2x3y80且3x2y70,则xy的最大值是()

A.7B.

C.

2D. 3

382.已知命题p:函数ylog0.5(x2xa)的值域为R,命题q:函数y(52a)

2x

是减函数。若p或q为真命题,p且q为假命题,则实数a的取值范围是

()

A.a≤1 B.a<2 C.1

axx2x32>0 4.求a,b的值,使得关于x的不等式ax2+bx+a2-1≤0的解集分别是:

(1)[-1,2];(2)(-∞,-1]∪[2,+∞);(3){2};(4)[-1,+∞). 5. 解关于x的不等式1a2xaax(a0且a1)6.(2002北京文)数列x由下列条件确定:xn1a0,xn11a,nN xn2xn16 学而思教育·学习改变命运 思考成就未来!

高考网www.xiexiebang.com(1)证明:对于n2,总有xna,(2)证明:对于n2,总有xnxn1.

7.设P=(log2x)2+(t-2)log2x-t+1,若t在区间[-2,2]上变动时,P恒为正值,试求x的变化范围.

8.已知数列an的通项为an,前n项和为sn,且an是sn与2的等差中项,数列b1=1,点P(bn,bn+1)在直线x-y+2=0上。Ⅰ)求数列an、bn的通项公式an,bn Ⅱ)设bn的前n项和为Bn, 试比较

1B11B2...1Bn与2的大小。

bn中,Ⅲ)设Tn=b1a1b2a2...bnan,若对一切正整数n,Tnc(cZ)恒成立,求c的最小值

八、参考答案

1.解:画出图象,由线性规划知识可得,选D 2.解:命题p为真时,即真数部分能够取到大于零的所有实数,故二次函数x22xa的判别式44a0,从而a1;命题q为真时,52a1a2。

若p或q为真命题,p且q为假命题,故p和q中只有一个是真命题,一个是假命题。

若p为真,q为假时,无解;若p为假,q为真时,结果为1

(1)当a1时,由图1知不等式的解集为xxa或1x3

(2)当1a3时,由图2知不等式的解集为(3)当a3时,由图3知不等式的解集为xx1或ax3

xx1或3xa

4.分析:方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互交通.

解(1)

由题意可知,a>0且-1,2是方程ax2+bx+a2-1≤0的根,所以 学而思教育·学习改变命运 思考成就未来!

高考网www.xiexiebang.com

(3)由题意知,2是方程ax2+bx+a2-1=0的根,所以

4a+2b+a2-1=0.

① 又{2}是不等式ax2+bx+a2-1≤0的解集,所以

(4)由题意知,a=0.b<0,且-1是方程bx+a2-1=0的根,即-b+a2-1=0,所以

a=0,b=-1.

说明:二次函数与一元二次方程、一元二次不等式之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间相互联系相互渗透,并在一定条件下相互转换。

5.分析:在不等式的求解中,换元法和图解法是常用的技巧,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,数形结合,则可将不等式的解化归为直观,形象的图象关系,对含参数的不等式,运用图解法,还可以使得分类标准更加明晰。解:设tax,原不等式化为1t2at(t0)设y1一坐标系中作出两函数图象

y1y2,故(1)当0a1时,0t1,即0a当1a2时,如右图,解方程2x1t(t0),y2at,在同

21x0,)

21tat得t1,222a2a22(2)a2a2ta2a2x(log22aa

a2aa22,log2)(3)当a2时,原不等式的解集为φ

综上所述,当a(0,1)时,解集为0,);当a(1,2)时,解集为

2a(log2a22,log2a2a22);当a2,)时,解集为φ。

6.证明:(1)x1a0及xn112(xnaxn)知xn0,从而xn112(xnaxn)xnaxna(nN)学而思教育·学习改变命运 思考成就未来!

高考网www.xiexiebang.com 当n2时xna成立

12axn1a(2)当n2时,xn2a0,xn1(xn),xn1xn2xn(xn)

=12axnxn0.n2时,xnxn1成立

7.分析:要求x的变化范围,显然要依题设条件寻找含x的不等式(组),这就需要认真思考条件中“t在区间[-2,2]上变动时,P恒为正值.”的含义.你是怎样理解的?如果继续思考有困难、请换一个角度去思考.在所给数学结构中,右式含两个字母x、t,t是在给定区间内变化的,而求的是x的取值范围,能想到什么?

解:设P=f(t)=(log2x-1)t+log22x-2log2x+1.因为 P=f(t)在top直角坐标系内是一直线,所以t在区间[-2,2]上变动时,P恒为正值的充要条件

解得log2x>3或log2x<-1.

说明:改变看问题的角度,构造关于t的一次函数,灵活运用函数的思想,使难解的问题转化为熟悉的问题.

8.分析:本题主要复习数列通项、求和及不等式的有关知识。

n略解:Ⅰ)an2,bn2n1

Ⅱ)Bn=1+3+5+„+(2n-1)=n2

1B11B21121n...1231B11Bn1121212132...1n122 12..1B2(n1).n...1Bn1(12)(1213)...(1n11n)

2 Ⅲ)Tn=

121212123222325232...521242n1n2①

2n1222n1Tn...123②

22n①-②得Tn1223...2n12n1 学而思教育·学习改变命运 思考成就未来!

高考网www.xiexiebang.com Tn312n22n12423n3 737162 又T41232224满足条件Tnc的最小值整数c3。

第三篇:向量 不等式(高考题型与方法)

向量(高考题型与方法)

1.已知向量a=

1),b=(0,-1),c=(k

。若a-2b与c共线,则k=___________________。

2.已知向量a,b满足a1,b2,a与b的夹角为60°,则ab

3.已知平面向量,,1,2,(2),则2a的值是4.如图,在ABC中,AD

AB,BC,AD1,则ACAD.5.在正三角形ABC中,D是BC上的点,AB3,BD1,则ABAD

6.2011年高考山东卷理科12)设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若11且2,则称A3,A4调和分割A1,A2 ,A1A3A1A2(λ∈R),A1A4A1A2(μ∈R),

已知点C(c,o),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是

(A)C可能是线段AB的中点(B)D可能是线段AB的中点

(C)C,D可能同时在线段AB上(D)C,D不可能同时在线段AB的延长线上

b,(ac)(bc)0,7.(2011年高考全国新课标卷理科10)若a,且ab0,c均为单位向量,则|abc|的最大值为

(A)21(B)1(C)2(D)2

8.(2011年高考四川卷理科4)如图,正六边形ABCDEF中,BACDEF=_____

9.已知直角梯形ABCD中,AD∥BC,ADC90,AD=2,BC=1,P是腰DC上的动点,则

|PA3PB|的最小值为.9.若等边ABC的边长为23,平面内一点M满足A.23B.2 C.2D.2 11,则等于 33

10.ABC和点M满足MAMBMC0.若存在实n使得AMACnAM成立,则n

=

A.2B.3C.4D.5

11.(2010年高考全国卷Ⅱ理科7)△ABC中,点D在边AB上,CD平分∠ACB,若CB= a , CA= b , a= 1,b= 2, 则CD=

12213443a + b(B)a +b(C)a +b(D)a +b 33335555(A)

212.(2010年高考四川卷理科6)设点M是线段BC的中点,点A在直线BC外,BC16,ABACABAC,则AM

(A)8(B)4(C)2(D)1

不等式与推理证明(高考题型与方法)

yx1.设m1,在约束条件ymx下,目标函数zx5y的最大值为4,则m的值为.

xy1

2.若变量x,y满足约束条件32xy9,则zx2y的最小值为.6xy9

3.(2011年高考天津卷文科5)已知alog23.6,blog43.2,clog43.6,则

A.abcB.acbC.bacD.cab

4.(2011年高考广东卷文科4)函数f(x)1lg(x1)的定义域是()1x

A.(,1)B.(1,)C.(1,1)(1,)D.(,)

5.(2011年高考陕西卷文科3)设0ab,则下列不等式中正确的是

ababb(B)a22

ababb(C)ab

a22(A)

ab

6.(2010山东文数)(14)已知x,yR,且满足xy1,则xy的最大值为.34

第四篇:高三数学不等式问题的题型与方法1

第10讲 不等式

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

一、知识整合

1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.

2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.

3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.

4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).

5.证明不等式的方法多样,内容丰富、技巧性较强.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.

6.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:1.审题,2.建立不等式模型,3.解数学问题,4.作答。

7.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.

二、方法技巧

1.解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解。

2.解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。

3.不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。如运用放缩法证明不等式时要注意调整放缩的度。

4.根据题目结构特点,执果索因,往往是有效的思维方法。

三、例题分析

b)∈M,且对M中的其它元素(c,d),总有c≥a,则a=____.

分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M中的其它元素(c,d),总有c≥a”?M中的元素又有什么特点? 解:依题可知,本题等价于求函数x=f(y)=(y+3)·|y-1|+(y+3)

(2)当1≤y≤3时,所以当y=1时,xmin= 4.

简评:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示 其数学实质.

合M

中的元

例2.已知非负实数x,y满足2x3y80且3x2y70,则xy的最大值是()

A.78

B.

C.

2D. 3 33解:画出图象,由线性规划知识可得,选D 例3.数列xn由下列条件确定:x1a0,xn1(1)证明:对于n2,总有xn1a x,nNn2xna,(2)证明:对于n2,总有xnxn1. 证明:(1)x1a0及xn1(xn12a1aa)知xn0,从而xn1(xn)xna(nN)xn2xnxn当n2时xna成立

(2)当n2时,xn2a0,xn11a1a(xn),xn1xn(xn)2xn2xn1axn=0.n2时,xnxn1成立。2xn2a2a0 例4.解关于x的不等式:xxa9分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。本题的关键不是对参数a进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。

xaxa解:当xa时,不等式可转化为 即2229xxa2a9x9ax2a0ax317a bxaxa 当xa时不等式可化为即222ax(ax)2a9x9ax2a0

xa2a或xa332a317,a。

36a故不等式的解集为(,3例5.若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围. 分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.

解:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax2+bx.于是

解法一(利用基本不等式的性质)不等式组(Ⅰ)变形得

(Ⅰ)所以f(-2)的取值范围是[6,10]. 解法二(数形结合)

建立直角坐标系aob,作出不等式组(Ⅰ)所表示的区域,如图6中的阴影部分.因为f(-2)=4a-2b,所以4a-2b-f(-2)=0表示斜率为2的直线系.如图6,当直线4a-2b-f(-2)=0过点A(2,1),B(3,1)时,分别取得f(-2)的最小值6,最大值10.即f(-2)的取值范围是:6≤f(-2)≤10. 解法三(利用方程的思想)

又f(-2)=4a-2b=3f(-1)+f(1),而

1≤f(-1)≤2,3≤f(1)≤4,① 所以

3≤3f(-1)≤6.

② ①+②得4≤3f(-1)+f(1)≤10,即6≤f(-2)≤10.

简评:(1)在解不等式时,要求作同解变形.要避免出现以下一种错解:

2b,8≤4a≤12,-3≤-2b≤-1,所以 5≤f(-2)≤11.

(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.

例6.设函数f(x)=ax2+bx+c的图象与两直线y=x,y=x,均不相交.试证明对一切xR都有axbxc21.4a分析:因为x∈R,故|f(x)|的最小值若存在,则最小值由顶点确定,故设f(x)=a(x-x0)2+f(x0). 证明:由题意知,a≠0.设f(x)=a(x-x0)2+f(x0),则又二次方程ax2+bx+c=±x无实根,故

Δ1=(b+1)2-4ac<0,Δ2=(b-1)2-4ac<0.

所以(b+1)2+(b-1)2-8ac<0,即2b2+2-8ac<0,即b2-4ac<-1,所以|b2-4ac|>1.

简评:从上述几个例子可以看出,在证明与二次函数有关的不等式问题时,如果针对题设条件,合理采取二次函数的不同形式,那么我们就找到了一种有效的证明途径.

例7.某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?

解:设2001年末的汽车保有量为a1,以后每年末的汽车保有量依次为a2,a3....,每年新增汽车x万辆。由题意得

an10.94anx即an1xx0.94(an)0.060.06xx)0.94n10.060.0630令an60,解得x(30)0.0610.94n1上式右端是关于n的减函数,且当n时,上式趋于3.6an(30故要对一切自然数n满足an60,应有x3.6,即每年新增汽车不应超过3.6万辆

第五篇:不等式与不等式组小结与解含参数问题题型归纳(定稿)

第九章 不等式与不等式知识点归纳

一、不等式及其解集和不等式的性质

用不等号表示大小关系的式子叫做不等式。常见不等号有:“<” “>” “≤” “≥” “ ≠ ”。含有未知数的不等式的所有解组成这个不等式的解集,解不等式就是求不等式的解集。注:①在数轴上表示不等式解集时,有等号用实心点,无等号用空心圈。

②方向:大于向右画,小于向左画。

不等式的三个性质:①不等式两边同时加(或减)同一数或式子,不等号不变;

②不等式两边同时乘(或除)同一正数,不等号不变; ③不等式两边同时乘(或除)同一负数,不等号改变。

作差法比较a与b的大小:若a-b>0,则a>b;若a-b<0;则a<b;若a-b=0, 则a=b。例1、下列式子中哪些是不等式?

① a+b=b+a;②a<b-5;③-3>-5;④x≠1 ;⑤2x-3。例

2、若a

aba1b122 -;④

;⑤am___bm 2232⑥ab 0;⑦a+m b+m;⑧a² b²;⑨am bm。

3、①由axa,可得x1可得a____;②由axa,可得x<1可得a____; ③ 由mx22xm可得x1,那么m______。

4、不等式5(x2)282x的非负整数解是__________________。二、一元一次不等式及其实际问题

一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式(即分母中不含未知数),这样的不等式叫做一元一次不等式。解一元一次不等式的一般步骤:(1)去分母(两边每一项同乘分母的最小公倍数)(2)去括号(括号里每一项都要乘括号前面的系数)(3)移项(变号后移项)(4)合并同类项(5)将x项系数化为1(系数为负数要变号)。一元一次不等式与实际问题(审设列解验答)

常见表示不等关系的关键词:①不超过,不多于,至多,最多(≤);②不少于,不少于,至少,最少(≥)③之前,少于,低于(<);④超过,多于,大于(>)。(1)审(找表示不等关系的关键词);(2)设(把问题中的“至多、至少” 去掉)(3)列;(4)解;(5)验(实际问题是否需要求整数解);(6)答(加上“至多、至少”作答)。

三、不等式组及其解集,与实际问题

几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

不等式组中,几个一元一次不等式解集的公共部分,叫做由它们组成的不等式组的解集。一元一次不等式组与实际问题(审设列解验答)

(1)审(找表示不等关系的关键词和题中涉及的两个未知量);(2)设(设其中一个未知量,另一个用设的未知数表示)(3)列;(4)解;(5)验(实际问题是否需要求整数解);(6)答(方案问题要描述清楚)。一元一次不等式组的基本类型(以两个不等式组成的不等式组为例)

类型(设a>b)不等式组的解集

1.(同大型,同大取大)x>a

数轴表示

2.(同小型,同小取小)x

3.(一大一小型,小大之间)b

4.(比大的大,比小的小空集)无解

特殊:

x>3x3x>3x3无解,无解无解有解x<3x<3;x3;x3;专题 解决含参数的一元一次不等式(组)

类型

一、根据已知不等式(组)的解集,求参数的值(解集是突破口)方法归纳:①表示解集;②根据已知解集的情况列出方程(组);③解方程(组)

1、若不等式的解集为,求k值。,得解:化简不等式,得x≤5k①,比较已知解集②,∴③。

2、若不等式组的解集是-1

解:化简不等式组,得 ①

∵ 它的解集是-1

也为其解集,比较得 ② ∴(a+1)(b-1)=-6.③

2xb0b________练习、不等式组的解集为:1x3,则a_____,。

3x5a 类型

二、根据已知不等式(组)的特殊解集,求参数的取值范围(解集是突破口)方法归纳:①表示解集;②根据已知解集的情况列出不等式;③解不等式 例

1、若关于x的不等式3x-a>4(x-1)的解集是负数,求a的取值范围?

解:化简不等式得:x<4-a①,∵ 它的解集是负数,∴只要4-a≤0均可满足②∴a≥4③ 练习、若关于x的不等式-3(x+2)>m+2的解集是正数,求m的取值范围?

方法归纳:①表示解集;②将解集表示在数轴上,平移分析;③得参数的取值范围。

1、已知关于x的不等式x-a>0,的整数解共5个,则a的取值范围是________。例

2、已知关于x的不等式组的整数解共5个,则a的取值范围是________。

解:化简不等式组,得有解①,将其表在数轴上,②

如图1,其整数解5个必为x=1,0,-1,-2,-3。由图1得:-4

xm0练习、不等式组的整数解只有-2和-1,则a,b的取值范围__________________;

2x51

类型

三、根据不等式组是否有解,及解的特殊情况;求参数取值范围。

方法归纳:

1、表示解集;

2、将解集表示在数轴上,平移分析;

3、得参数的取值范围。例

1、不等式组xm0有解,则m的取值范围______;

2x51解:化简不等式组,得x<m有解①,将其表示在数轴上②,观察可知:m≤-2③

x-2 练习

1、若不等式组x<m的解集是x<5,则m的取值范围______;

x<5xm02、若不等式组3的解集是x3,则m的取值范围是_______________。

3x8

13、不等式组x30无解,则k的范围__________。

2xk1类型

四、根据已知方程(组)的解的情况,求参数的取值范围(解的情况是突破口)方法归纳:①表示方程(组)的解;②根据已知解的情况列出不等式;③解不等式;

1、已知关于x的方程5x-2m=3x-6m+2的解大于-5,求符合条件m的非负整数值? 解:解方程的x=1-2m,① ∵解大于-5,∴1-2m>-5,②

解得:m<3,(3)∴符合条件m的非负整数值为:0,1,2。例2.已知方程组xy=m的解是非负数,求m取值范围的?

5x3y=13解:解方程组得①

∵方程组的解是非负数,∴

即 ②

解不等式组(3)∴m的取值范围为≤m≤, 练习

1、已知方程组

2xy=1+m的解满足x>y,求m取值范围的?

x2y=1-m2x-3y=1+a练习

2、已知方程组的解满足x+y>0,求m取值范围的?

x2y=a

下载第 3讲 不等式问题的题型与方法word格式文档
下载第 3讲 不等式问题的题型与方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    不等式典型题型

    2011高三文科必修(5)不等式经典题型 1、 比较a2+b2+c2与ab+bc+ca的大小(做差后配方) +abba2、 已知a、b∈R,且a≠b,证明:ab>ab(做比) 9(x>5)的最小值(利用均值不等式) x5 ⑵设x>0,y>0,不......

    第二讲 不等式的解题方法

    高 考 实 战 不等式 第二讲 不等式的解题方法 一、 拼凑法 例1:二、 分离法 三、 定义法 高 考 实 战 四、条件法 不等式 五、比较法 六、综合法 高 考 实 战 不等式 七、......

    不等式的证明方法习题精选精讲

    习题精选精讲不等式的证明不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方......

    绝对值不等式题型五

    典型例题五例5 求证ab 1aba 1ab 1b. 分析:本题的证法很多,下面给出一种证法:比较要证明的不等式左右两边的形式完全相同,使我们联想利用构造函数的方法,再用单调性去证明. 证明:设f(......

    证明不等式方法

    不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。 1比较法比较法是证明不等式的最基本方法......

    不等式证明若干方法

    安康学院 数统系数学与应用数学 专业 11 级本科生论文(设计)选题实习报告11级数学与应用数学专业《科研训练2》评分表注:综合评分60的为“及格”;......

    立体几何中不等式问题的证明方法

    例谈立体几何中不等式问题的证明方法立体几何中的不等式问题具有很强的综合性,解决这类问题既要有较强的空间想象能力,又要有严密的逻辑思维能力,因此有一定的难度.下面我们介绍......

    不等式证明的方法与技巧

    不等式证明的方法与技巧陈怡不等式证明是不等式中的基本内容之一,也是其重难点所在。许多学生遇到不等式证明题不知所措,无从下手。因此,有必要从解题思路入手,总结一些不等式证......